File size: 16,883 Bytes
e3aec0d 0a59e8a 2941e2c 0a59e8a 2941e2c 0a59e8a 2941e2c 0a59e8a 2941e2c e3aec0d 2941e2c 0a59e8a 5c476e0 0a59e8a 5c476e0 0a59e8a 5c476e0 0a59e8a 2941e2c 0a59e8a 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 0a59e8a a369eb8 60f01ba a369eb8 60f01ba a369eb8 60f01ba a369eb8 60f01ba a369eb8 60f01ba a369eb8 0a59e8a a369eb8 0a59e8a 5c476e0 0a59e8a 60f01ba 0a59e8a 60f01ba 0a59e8a 60f01ba 0a59e8a 60f01ba 0a59e8a 60f01ba 0a59e8a 60f01ba 0a59e8a a369eb8 0a59e8a 60f01ba 0a59e8a a369eb8 0a59e8a 60f01ba a369eb8 60f01ba a369eb8 60f01ba a369eb8 60f01ba 0a59e8a 2941e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
"""Model loading and caching - optimized for NVIDIA A10G GPUs."""
import os
import torch
from transformers import (
Wav2Vec2Processor,
Wav2Vec2ForCTC,
AutoProcessor,
AutoModelForSpeechSeq2Seq,
WhisperProcessor,
)
from typing import Tuple, Optional
from data.manager import MODEL_OUTPUT_DIR
# Available models for experimentation
AVAILABLE_MODELS = {
"Wav2Vec2 Base (960h)": "facebook/wav2vec2-base-960h",
"Wav2Vec2 Large (960h)": "facebook/wav2vec2-large-960h",
"Wav2Vec2 Base (100h)": "facebook/wav2vec2-base",
"OWSM v3.1 Small (ESPnet)": "espnet/owsm_v3.1_ebf_small",
}
# Fine-tuned model key (added dynamically if model exists)
FINE_TUNED_MODEL_KEY = "Fine-tuned Whisper (Caribbean Voices)"
# Global variables for model caching
current_model_name = None
current_processor = None
current_model = None
# Optimized for CUDA on A10G GPUs
device = "cuda" if torch.cuda.is_available() else "cpu"
def is_fine_tuned_model_available() -> bool:
"""Check if a fine-tuned model exists in MODEL_OUTPUT_DIR"""
if not os.path.exists(MODEL_OUTPUT_DIR):
return False
# Check for model files directly in MODEL_OUTPUT_DIR
model_files = [
os.path.join(MODEL_OUTPUT_DIR, "pytorch_model.bin"),
os.path.join(MODEL_OUTPUT_DIR, "model.safetensors"),
os.path.join(MODEL_OUTPUT_DIR, "config.json"),
os.path.join(MODEL_OUTPUT_DIR, "model_index.json"), # For ESPnet models
]
if any(os.path.exists(f) for f in model_files):
return True
# Check for ESPnet model in subdirectory
espnet_dir = os.path.join(MODEL_OUTPUT_DIR, "espnet_model")
if os.path.exists(espnet_dir):
espnet_files = [
os.path.join(espnet_dir, "config.json"),
os.path.join(espnet_dir, "pytorch_model.bin"),
os.path.join(espnet_dir, "model.safetensors"),
]
if any(os.path.exists(f) for f in espnet_files):
return True
# Check for wrapper state dict (ESPnet wrapper models)
wrapper_state = os.path.join(MODEL_OUTPUT_DIR, "wrapper_state_dict.pt")
if os.path.exists(wrapper_state):
return True
# If directory exists and has any content, consider it a valid model directory
# (some models might save differently)
if os.path.isdir(MODEL_OUTPUT_DIR):
try:
contents = os.listdir(MODEL_OUTPUT_DIR)
# If directory has any files (not just empty), it might be a model
if contents:
# Check for any common model file extensions
model_extensions = ['.bin', '.safetensors', '.pt', '.json', '.txt']
for item in contents:
item_path = os.path.join(MODEL_OUTPUT_DIR, item)
if os.path.isfile(item_path):
if any(item.endswith(ext) for ext in model_extensions):
return True
except (OSError, PermissionError):
pass
return False
def load_model(model_key: str) -> Tuple[Optional[object], object]:
"""Load a model and processor, caching them for efficiency"""
global current_model_name, current_processor, current_model
# Handle fine-tuned model
if model_key == FINE_TUNED_MODEL_KEY:
if not is_fine_tuned_model_available():
raise FileNotFoundError(
f"Fine-tuned model not found at {MODEL_OUTPUT_DIR}. "
f"Please train a model first."
)
if current_model_name != MODEL_OUTPUT_DIR:
print(f"Loading fine-tuned model from {MODEL_OUTPUT_DIR}...")
# Try to load processor (WhisperProcessor or AutoProcessor)
try:
processor = WhisperProcessor.from_pretrained(MODEL_OUTPUT_DIR)
except:
processor = AutoProcessor.from_pretrained(MODEL_OUTPUT_DIR)
# Load model - use AutoModelForSpeechSeq2Seq for compatibility
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_OUTPUT_DIR)
model.to(device)
model.eval()
current_processor = processor
current_model = model
current_model_name = MODEL_OUTPUT_DIR
print(f"✓ Fine-tuned model loaded on {device}")
return current_processor, current_model
model_path = AVAILABLE_MODELS[model_key]
# Handle OWSM models differently - optimized for A10G GPUs with Flash Attention
if "OWSM" in model_key:
try:
from espnet2.bin.s2t_inference import Speech2Text
if current_model_name != model_path:
# Flash Attention should be available on A10G GPUs
try:
import flash_attn
print("Loading OWSM model with Flash Attention optimization (A10G GPU)...")
except ImportError:
print("⚠ Loading OWSM model without Flash Attention (performance may be suboptimal)")
print(" Flash Attention should be installed on A10G GPUs - check build logs")
current_model = Speech2Text.from_pretrained(model_path)
current_model_name = model_path
print(f"✓ OWSM model loaded on {device}")
return None, current_model # No processor for ESPnet
except ImportError:
raise ImportError("ESPnet not installed. Install with: pip install espnet espnet_model_zoo")
# Standard HuggingFace models
if current_model_name != model_path:
print(f"Loading model: {model_path}")
current_processor = Wav2Vec2Processor.from_pretrained(model_path)
current_model = Wav2Vec2ForCTC.from_pretrained(model_path)
current_model.to(device)
current_model.eval()
current_model_name = model_path
print(f"Model loaded on {device}")
return current_processor, current_model
def get_available_models():
"""Get list of available model keys, including fine-tuned model if available"""
models = list(AVAILABLE_MODELS.keys())
# Add fine-tuned model if it exists
if is_fine_tuned_model_available():
models.append(FINE_TUNED_MODEL_KEY)
return models
def load_checkpoint(checkpoint_path: str) -> Tuple[Optional[object], object]:
"""
Load a model from a specific checkpoint directory or Hugging Face Hub.
Args:
checkpoint_path: Path to checkpoint directory or HF Hub repo ID (e.g., "data/owsm_caribbean_finetuned/checkpoint-2000" or "shaun3141/caribbean-voices-owsm-finetuned")
Returns:
Tuple of (processor, model)
"""
hf_token = os.getenv("HF_TOKEN")
# Check if this is an HF Hub repo ID (contains / and doesn't exist locally)
is_hf_hub = "/" in checkpoint_path and not os.path.exists(checkpoint_path)
if is_hf_hub:
print(f"Loading checkpoint from Hugging Face Hub: {checkpoint_path}...")
if not hf_token:
raise ValueError(f"HF_TOKEN required to load model from Hub: {checkpoint_path}")
else:
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint not found at {checkpoint_path}")
print(f"Loading checkpoint from {checkpoint_path}...")
# Try to load processor
try:
processor = WhisperProcessor.from_pretrained(checkpoint_path, token=hf_token if is_hf_hub else None)
except:
processor = AutoProcessor.from_pretrained(checkpoint_path, token=hf_token if is_hf_hub else None)
# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained(checkpoint_path, token=hf_token if is_hf_hub else None)
model.to(device)
model.eval()
print(f"✓ Checkpoint loaded on {device}")
return processor, model
def get_available_checkpoints(include_base_models: bool = True) -> list:
"""
Get list of available checkpoints in MODEL_OUTPUT_DIR and Hugging Face Hub.
Args:
include_base_models: If True, include base models from AVAILABLE_MODELS
Returns:
List of checkpoint names (e.g., ["Final Model", "checkpoint-1000", "checkpoint-2000", "OWSM v3.1 Small (ESPnet)"])
"""
checkpoints = []
# Add base models first if requested
if include_base_models:
checkpoints.extend(list(AVAILABLE_MODELS.keys()))
# Check Hugging Face Hub for uploaded models (persistent storage)
hf_token = os.getenv("HF_TOKEN")
if hf_token:
try:
from huggingface_hub import HfApi
from datetime import datetime
api = HfApi(token=hf_token)
# Search for all versioned OWSM models
try:
models = api.list_models(
author="shaun3141",
search="caribbean-voices-owsm-finetuned",
token=hf_token
)
for model_info in models:
repo_id = model_info.id
if "caribbean-voices-owsm-finetuned-" in repo_id:
# Extract timestamp from repo name
timestamp_str = repo_id.split("-")[-1]
try:
# Parse timestamp: YYYYMMDD-HHMMSS
dt = datetime.strptime(timestamp_str, "%Y%m%d-%H%M%S")
readable_date = dt.strftime("%Y-%m-%d %H:%M")
checkpoint_name = f"OWSM Finetuned ({readable_date})"
checkpoints.append(checkpoint_name)
except ValueError:
# Fallback if timestamp parsing fails
checkpoints.append(f"OWSM Finetuned ({timestamp_str})")
except Exception:
pass
# Search for all versioned Whisper models
try:
models = api.list_models(
author="shaun3141",
search="caribbean-voices-whisper-finetuned",
token=hf_token
)
for model_info in models:
repo_id = model_info.id
if "caribbean-voices-whisper-finetuned-" in repo_id:
# Extract timestamp from repo name
timestamp_str = repo_id.split("-")[-1]
try:
# Parse timestamp: YYYYMMDD-HHMMSS
dt = datetime.strptime(timestamp_str, "%Y%m%d-%H%M%S")
readable_date = dt.strftime("%Y-%m-%d %H:%M")
checkpoint_name = f"Whisper Finetuned ({readable_date})"
checkpoints.append(checkpoint_name)
except ValueError:
# Fallback if timestamp parsing fails
checkpoints.append(f"Whisper Finetuned ({timestamp_str})")
except Exception:
pass
except Exception:
pass # Silently fail if HF Hub check fails
if not os.path.exists(MODEL_OUTPUT_DIR):
return checkpoints
# Check if final model exists locally (improved detection)
if is_fine_tuned_model_available():
checkpoints.append("Final Model")
# Find checkpoint directories
if os.path.isdir(MODEL_OUTPUT_DIR):
try:
for item in os.listdir(MODEL_OUTPUT_DIR):
checkpoint_path = os.path.join(MODEL_OUTPUT_DIR, item)
if os.path.isdir(checkpoint_path):
if item.startswith("checkpoint-"):
# Verify it's a valid checkpoint (has config.json or pytorch_model.bin)
if (os.path.exists(os.path.join(checkpoint_path, "config.json")) or
os.path.exists(os.path.join(checkpoint_path, "pytorch_model.bin")) or
os.path.exists(os.path.join(checkpoint_path, "model.safetensors"))):
checkpoints.append(item)
# Also check for other model directories that might not follow checkpoint-* naming
elif item not in ["espnet_model"]: # Skip known subdirectories
# Check if this directory contains model files
if (os.path.exists(os.path.join(checkpoint_path, "config.json")) or
os.path.exists(os.path.join(checkpoint_path, "pytorch_model.bin")) or
os.path.exists(os.path.join(checkpoint_path, "model.safetensors")) or
os.path.exists(os.path.join(checkpoint_path, "wrapper_state_dict.pt"))):
# Add as a checkpoint option
checkpoints.append(item)
except (OSError, PermissionError) as e:
print(f"⚠ Warning: Could not list checkpoints in {MODEL_OUTPUT_DIR}: {e}")
# Sort checkpoints: base models first, then versioned HF Hub models (newest first), then local checkpoints, then final model
def get_sort_key(name):
if name in AVAILABLE_MODELS:
return (0, name) # Base models first
elif name.startswith("OWSM Finetuned (") or name.startswith("Whisper Finetuned ("):
# Extract date for sorting (newest first)
try:
date_str = name.split("(")[1].rstrip(")")
from datetime import datetime
dt = datetime.strptime(date_str, "%Y-%m-%d %H:%M")
# Return negative timestamp so newest comes first
return (1, -dt.timestamp())
except:
return (1, 0)
elif name == "Final Model":
return (3, float('inf')) # Final model last
elif name.startswith("checkpoint-"):
try:
step_num = int(name.split("-")[1])
return (2, step_num) # Local checkpoints in middle, sorted by step
except:
return (2, 0)
else:
return (4, name) # Unknown items last
checkpoints.sort(key=get_sort_key)
return checkpoints
def get_checkpoint_path(checkpoint_name: str) -> str:
"""
Get full path to a checkpoint directory or HF Hub repo ID.
Args:
checkpoint_name: Name like "Final Model", "OWSM Finetuned (2024-01-15 14:30)", or "checkpoint-2000"
Returns:
Full path to checkpoint directory or HF Hub repo ID
"""
if checkpoint_name == "Final Model":
return MODEL_OUTPUT_DIR
elif checkpoint_name.startswith("OWSM Finetuned (") or checkpoint_name.startswith("Whisper Finetuned ("):
# Extract timestamp from checkpoint name and find matching repo
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN required to load models from Hub")
from huggingface_hub import HfApi
from datetime import datetime
api = HfApi(token=hf_token)
# Extract date from checkpoint name: "OWSM Finetuned (2024-01-15 14:30)"
try:
date_str = checkpoint_name.split("(")[1].rstrip(")")
# Parse readable date back to timestamp format
dt = datetime.strptime(date_str, "%Y-%m-%d %H:%M")
timestamp_str = dt.strftime("%Y%m%d-%H%M%S")
# Determine model type and search for matching repo
if checkpoint_name.startswith("OWSM"):
repo_pattern = f"shaun3141/caribbean-voices-owsm-finetuned-{timestamp_str}"
else:
repo_pattern = f"shaun3141/caribbean-voices-whisper-finetuned-{timestamp_str}"
# Verify repo exists
try:
api.model_info(repo_pattern, token=hf_token)
return repo_pattern
except Exception:
# Try to find closest match if exact timestamp doesn't match
search_term = "caribbean-voices-owsm-finetuned" if checkpoint_name.startswith("OWSM") else "caribbean-voices-whisper-finetuned"
models = api.list_models(author="shaun3141", search=search_term, token=hf_token)
# Return the most recent matching model
matching_models = [m.id for m in models if timestamp_str[:8] in m.id] # Match by date
if matching_models:
return matching_models[0]
raise FileNotFoundError(f"Model not found: {checkpoint_name}")
except Exception as e:
raise ValueError(f"Could not parse checkpoint name: {checkpoint_name}. Error: {e}")
else:
return os.path.join(MODEL_OUTPUT_DIR, checkpoint_name)
|