File size: 11,547 Bytes
984c806
 
 
 
 
 
0ac13f6
 
 
984c806
0ac13f6
984c806
0ac13f6
 
e3aec0d
0ac13f6
 
984c806
 
0ac13f6
984c806
 
 
0ac13f6
984c806
 
 
 
 
0ac13f6
984c806
 
 
e3aec0d
 
 
984c806
 
 
 
 
e3aec0d
 
 
 
 
 
 
0ac13f6
 
 
e3aec0d
 
 
0ac13f6
984c806
e3aec0d
 
 
 
 
 
 
984c806
0ac13f6
 
 
 
 
 
 
 
984c806
0ac13f6
 
 
 
 
3534bf2
 
 
 
0ac13f6
 
 
 
 
 
3534bf2
0ac13f6
 
 
 
 
 
 
 
984c806
 
0ac13f6
 
984c806
0ac13f6
 
984c806
0ac13f6
 
 
e3aec0d
0ac13f6
 
 
 
 
 
 
 
 
 
 
 
 
 
984c806
 
 
 
0ac13f6
 
 
 
 
984c806
 
0ac13f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984c806
 
 
 
 
 
0ac13f6
984c806
 
 
 
0ac13f6
984c806
 
0ac13f6
984c806
 
 
 
 
c0cd25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984c806
 
0ac13f6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Custom OWSM model with entity-weighted loss for Caribbean Voices challenge.
This implements loss re-weighting for proper nouns without external data.
"""
import torch
import torch.nn as nn
from transformers import AutoModelForSpeechSeq2Seq, PreTrainedModel
from transformers.modeling_outputs import Seq2SeqLMOutput
from typing import Set, Optional, Dict, Any

class OWSMWithEntityLoss(PreTrainedModel):
    """
    Wrapper around OWSM model that implements weighted cross-entropy loss 
    to up-weight errors on entity tokens.
    
    This model wraps the base model using composition rather than inheritance
    to avoid issues with the AutoModel factory pattern.
    """
    
    def __init__(self, config, base_model, tokenizer, high_value_tokens: Set[str], entity_weight: float = 3.0):
        """
        Args:
            config: Model configuration
            base_model: The instantiated base model (SpeechEncoderDecoderModel)
            tokenizer: Tokenizer for converting entity words to token IDs
            high_value_tokens: Set of entity words (lowercase) to up-weight
            entity_weight: Multiplier for entity token errors (default: 3.0)
        """
        super().__init__(config)
        self.model = base_model
        self.tokenizer = tokenizer
        self.entity_weight = entity_weight
        
        # Store mapping from entity word to all its token IDs
        self.entity_word_to_token_ids: Dict[str, Set[int]] = {}
        all_entity_token_ids = set()
        
        print(f"Building entity token ID set from {len(high_value_tokens)} entities...")
        for word in high_value_tokens:
            tokens = tokenizer.tokenize(word)
            if tokens:
                # Get ALL token IDs for this entity word
                token_ids = tokenizer.convert_tokens_to_ids(tokens)
                token_id_set = set(token_ids)
                self.entity_word_to_token_ids[word] = token_id_set
                all_entity_token_ids.update(token_id_set)
        
        print(f"  → Mapped to {len(all_entity_token_ids)} unique token IDs")
        if self.entity_word_to_token_ids:
            avg_tokens = sum(len(ids) for ids in self.entity_word_to_token_ids.values()) / len(self.entity_word_to_token_ids)
            print(f"  → Average tokens per entity: {avg_tokens:.2f}")
        
        # Pre-compute vocab_weights tensor for O(1) lookup during training
        vocab_size = config.vocab_size if hasattr(config, 'vocab_size') else len(tokenizer)
        self.register_buffer('vocab_weights', torch.ones(vocab_size, dtype=torch.float32))
        
        # Set entity token weights
        for token_id in all_entity_token_ids:
            if 0 <= token_id < vocab_size:
                self.vocab_weights[token_id] = self.entity_weight
        
        # Store for debugging
        self.entity_token_ids = all_entity_token_ids
        self.high_value_tokens = high_value_tokens

    def get_encoder(self):
        """Delegate to sub-model's encoder."""
        return self.model.get_encoder()

    def get_decoder(self):
        """Delegate to sub-model's decoder."""
        return self.model.get_decoder()
        
    def forward(self, input_features=None, attention_mask=None, decoder_input_ids=None, labels=None, **kwargs):
        """
        Forward pass that computes weighted loss if labels are provided.
        Delegates to underlying model.
        """
        # Filter out arguments that the base model doesn't accept
        # num_items_in_batch is passed by newer transformers versions but not accepted by model
        model_kwargs = {k: v for k, v in kwargs.items() if k != 'num_items_in_batch'}
        
        outputs = self.model(
            input_features=input_features,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            labels=labels,
            return_dict=True,
            **model_kwargs
        )
        
        # If we are not training or have no labels, return standard outputs
        if labels is None:
            return outputs
            
        # Custom Loss Computation
        logits = outputs.logits  # [B, T, V]
        
        # Flatten
        # Standard CrossEntropyLoss expects [N, C] logits and [N] labels
        # where N is batch_size * sequence_length
        
        flat_logits = logits.view(-1, logits.size(-1))
        flat_labels = labels.view(-1)
        
        # Create per-token weights
        # Use pre-computed weights: O(1) lookup
        # labels can be -100 (ignore), we need to handle that for lookup
        
        # Create a mask for valid labels (not -100)
        valid_mask = (flat_labels != -100)
        
        # Use padding token ID (usually 0 or 1) for lookup where label is -100
        # This avoids index out of bounds. We'll mask the loss anyway.
        safe_labels = flat_labels.clone()
        safe_labels[~valid_mask] = 0 
        
        # Get weights
        weights = self.vocab_weights[safe_labels]
        
        # Compute unreduced loss
        loss_fct = nn.CrossEntropyLoss(reduction="none")
        loss = loss_fct(flat_logits, flat_labels)
        
        # Apply weights
        weighted_loss = loss * weights
        
        # Apply masking (CrossEntropyLoss usually handles -100 by ignoring, 
        # but since we used reduction='none', we have to double check)
        # The loss for -100 labels should be 0 from CrossEntropyLoss if used correctly,
        # but explicit masking is safer with custom weighting.
        weighted_loss = weighted_loss[valid_mask]
        
        if weighted_loss.numel() == 0:
            final_loss = torch.tensor(0.0, device=logits.device, requires_grad=True)
        else:
            final_loss = weighted_loss.mean()
            
        return Seq2SeqLMOutput(
            loss=final_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def generate(self, *args, **kwargs):
        """Delegate generation to the underlying model."""
        return self.model.generate(*args, **kwargs)
    
    def prepare_inputs_for_generation(self, *args, **kwargs):
        """Delegate to underlying model."""
        return self.model.prepare_inputs_for_generation(*args, **kwargs)
    
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str,
                       tokenizer, high_value_tokens: Set[str],
                       entity_weight: float = 3.0, **kwargs):
        """Load pretrained OWSM model and wrap with entity-weighted loss."""
        # Load the base model using the Auto class
        base_model = AutoModelForSpeechSeq2Seq.from_pretrained(
            pretrained_model_name_or_path, **kwargs
        )
        
        # Initialize wrapper
        model = cls(
            config=base_model.config,
            base_model=base_model,
            tokenizer=tokenizer,
            high_value_tokens=high_value_tokens,
            entity_weight=entity_weight
        )
        
        # Copy important attributes from base model to ensure full compatibility
        # with transformers components like Seq2SeqTrainer, data collators, etc.
        
        # 1. generation_config - Required for Seq2SeqTrainer evaluation
        # Seq2SeqTrainer accesses model.generation_config._from_model_config in prediction_step
        if hasattr(base_model, 'generation_config') and base_model.generation_config is not None:
            # Copy generation_config from base model (preferred method)
            model.generation_config = base_model.generation_config
        else:
            # Fallback: create generation_config from model config
            # This handles cases where base model doesn't have generation_config set
            try:
                from transformers import GenerationConfig
                model.generation_config = GenerationConfig.from_model_config(model.config)
            except Exception:
                # If GenerationConfig.from_model_config fails, create a minimal config
                # This ensures generation_config is never None, preventing AttributeError
                from transformers import GenerationConfig
                model.generation_config = GenerationConfig()
        
        # 1b. Ensure generation_config uses modern task/language flags instead of deprecated forced_decoder_ids
        # For Whisper models, prefer task="transcribe" and language settings over forced_decoder_ids
        # Setting task/language will cause forced_decoder_ids to be ignored (as per transformers deprecation)
        if hasattr(model.generation_config, 'task'):
            if model.generation_config.task is None:
                # Set default task for Whisper models (transcribe, not translate)
                model.generation_config.task = "transcribe"
            # If task is set, forced_decoder_ids will be ignored, so we can clear it to avoid warnings
            if hasattr(model.generation_config, 'forced_decoder_ids') and model.generation_config.forced_decoder_ids is not None:
                # Clear forced_decoder_ids when task is set to avoid deprecation warnings
                model.generation_config.forced_decoder_ids = None
        
        # 1c. Ensure pad_token_id is set in generation_config to avoid attention mask warnings
        # This is important when pad_token_id == eos_token_id
        if hasattr(tokenizer, 'pad_token_id') and tokenizer.pad_token_id is not None:
            if hasattr(model.generation_config, 'pad_token_id'):
                model.generation_config.pad_token_id = tokenizer.pad_token_id
        
        # If base model has language set, preserve it; otherwise default to None (auto-detect)
        # Note: For Caribbean Voices, we want transcription, not translation to English
        # So we don't force language='en' - let the model auto-detect or use what's in config
        
        # 2. main_input_name - Important for data collators and input handling
        # e.g., "input_features" for Whisper, "input_values" for Wav2Vec2
        if hasattr(base_model, 'main_input_name'):
            model.main_input_name = base_model.main_input_name
        
        # 3. Model-specific config attributes that might be set on the instance
        # Note: forced_decoder_ids is deprecated in favor of task/language flags in generation_config
        # We still copy it for backward compatibility, but the modern approach is preferred
        for attr_name in ['forced_decoder_ids', 'suppress_tokens']:
            if hasattr(base_model, attr_name):
                attr_value = getattr(base_model, attr_name)
                if attr_value is not None:
                    setattr(model, attr_name, attr_value)
        
        return model

    def save_pretrained(self, save_directory, **kwargs):
        """
        Save the underlying model to the directory.
        This ensures that the saved model is a standard OWSM model
        that can be loaded with AutoModelForSpeechSeq2Seq for inference.
        """
        print(f"Saving underlying model to {save_directory}...")
        self.model.save_pretrained(save_directory, **kwargs)