File size: 12,276 Bytes
2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c 5bbb30e 9e0ae37 2941e2c 5bbb30e 9e0ae37 5bbb30e 9e0ae37 5bbb30e 9e0ae37 5bbb30e 9e0ae37 5bbb30e 9e0ae37 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c e3aec0d 2941e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
"""Status checking utilities."""
import os
import json
import pandas as pd
from data.manager import (
ENTITIES_PATH, MODEL_OUTPUT_DIR, AUDIO_DIR
)
from data.loader import get_hf_dataset, HF_DATASET_NAME, is_dataset_loaded, get_train_dataframe, get_test_dataframe
def check_setup_status():
"""Check the status of various setup components"""
_hf_dataset = get_hf_dataset()
# Check if dataset is loaded and has train/test splits
train_data_available = False
test_data_available = False
train_count = 0
test_count = 0
if _hf_dataset is not None:
if 'train' in _hf_dataset:
train_data_available = True
train_count = len(_hf_dataset['train'])
if 'test' in _hf_dataset:
test_data_available = True
test_count = len(_hf_dataset['test'])
status = {
"entities_extracted": os.path.exists(ENTITIES_PATH),
"model_trained": os.path.exists(MODEL_OUTPUT_DIR),
"train_data": train_data_available,
"test_data": test_data_available,
"train_count": train_count,
"test_count": test_count,
"audio_files": os.path.exists(AUDIO_DIR) and len([f for f in os.listdir(AUDIO_DIR) if f.endswith('.wav')]) > 0,
"audio_from_hf": False,
"audio_count_hf": 0,
}
# Check if audio is available from HF dataset
if _hf_dataset is None:
try:
from datasets import load_dataset
hf_token = os.getenv("HF_TOKEN")
_hf_dataset = load_dataset(HF_DATASET_NAME, token=hf_token)
except:
pass
if _hf_dataset is not None:
# Check if audio column exists without iterating (which would trigger decoding)
# Even accessing .features might trigger torchcodec requirement, so wrap carefully
audio_count = 0
try:
# Try to check features - this might trigger torchcodec ImportError
has_train_audio = False
has_test_audio = False
try:
if 'train' in _hf_dataset:
features = _hf_dataset['train'].features
has_train_audio = 'audio' in features if features else False
except ImportError as e:
if 'torchcodec' in str(e).lower():
# Can't check - torchcodec not available
has_train_audio = False
else:
raise
try:
if 'test' in _hf_dataset:
features = _hf_dataset['test'].features
has_test_audio = 'audio' in features if features else False
except ImportError as e:
if 'torchcodec' in str(e).lower():
# Can't check - torchcodec not available
has_test_audio = False
else:
raise
if has_train_audio:
status["audio_from_hf"] = True
try:
audio_count = len(_hf_dataset['train'])
except:
pass
if has_test_audio:
status["audio_from_hf"] = True
try:
audio_count += len(_hf_dataset['test'])
except:
pass
if audio_count > 0:
status["audio_count_hf"] = audio_count
except ImportError as e:
if 'torchcodec' in str(e).lower():
# torchcodec not installed - can't check audio features
# Don't set audio_from_hf to avoid false positives
pass
else:
raise
except Exception as e:
# Other errors - don't fail, just skip audio check
if 'torchcodec' not in str(e).lower():
print(f"β Warning checking audio features: {e}")
# Check ESPnet
try:
from espnet2.bin.s2t_inference import Speech2Text
status["espnet_installed"] = True
except ImportError:
status["espnet_installed"] = False
# Check Flash Attention (optional optimization)
try:
import flash_attn
status["flash_attention_available"] = True
except ImportError:
status["flash_attention_available"] = False
# Get entity count if exists
if status["entities_extracted"]:
try:
with open(ENTITIES_PATH, 'r') as f:
data = json.load(f)
status["entity_count"] = len(data.get('entities', []))
except:
status["entity_count"] = 0
else:
status["entity_count"] = 0
return status
def get_data_loading_status():
"""Get formatted data loading status for Load Data tab"""
status = check_setup_status()
status_text = """
### π Current Data Status
"""
# Train data status
if status['train_data']:
status_text += f"β
**Training Data**: Available from dataset ({status['train_count']:,} samples)\n"
else:
status_text += "β **Training Data**: Not loaded from dataset\n"
# Test data status
if status['test_data']:
status_text += f"β
**Test Data**: Available from dataset ({status['test_count']:,} samples)\n"
else:
status_text += "β **Test Data**: Not loaded from dataset\n"
# Audio files status - show HF dataset status if available
if status['audio_from_hf']:
status_text += f"β
**Audio Files**: Available from HF Dataset ({status['audio_count_hf']:,} files)\n"
status_text += " Audio files are loaded directly from the dataset on-demand.\n"
elif status['audio_files']:
try:
audio_count = len([f for f in os.listdir(AUDIO_DIR) if f.endswith('.wav')])
status_text += f"β
**Audio Files**: Available locally ({audio_count:,} files)\n"
except:
status_text += "β
**Audio Files**: Available locally\n"
else:
status_text += "β οΈ **Audio Files**: Not loaded (will be loaded on-demand from HF Dataset if available)\n"
# Check if data was auto-loaded from HF
if status['train_data'] or status['test_data']:
status_text += f"\nπ‘ **Note**: Data is automatically loaded from `{HF_DATASET_NAME}` on startup.\n"
if status['audio_from_hf']:
status_text += "Audio files are accessed directly from the HF dataset (no local storage needed).\n"
else:
status_text += f"\nπ‘ **Note**: Data will be automatically loaded from `{HF_DATASET_NAME}` on startup.\n"
status_text += "If it hasn't loaded yet, you can manually load it below.\n"
return status_text
def get_status_display():
"""Get formatted status display with project insights"""
status = check_setup_status()
# Calculate project insights
train_samples = status.get('train_count', 0)
test_samples = status.get('test_count', 0)
audio_count = 0
avg_transcription_length = 0
vocab_size = 0
# Try to get vocabulary stats from training data if available
if status['train_data']:
try:
train_df = get_train_dataframe()
if 'Transcription' in train_df.columns:
avg_length = train_df['Transcription'].str.len().mean()
avg_transcription_length = avg_length
# Estimate vocabulary size
all_words = set()
for text in train_df['Transcription'].dropna():
all_words.update(text.lower().split())
vocab_size = len(all_words)
except:
pass
# Check audio files - prefer HF dataset count
if status['audio_from_hf']:
audio_count = status['audio_count_hf']
elif status['audio_files']:
try:
audio_count = len([f for f in os.listdir(AUDIO_DIR) if f.endswith('.wav')])
except:
audio_count = 0
else:
audio_count = 0
status_text = """
<div class="homepage-header">
<h1>ποΈ Caribbean Voices Hackathon</h1>
<p class="subtitle">OWSM v3.1 Training & Inference Platform</p>
</div>
<div class="insights-section">
<h2>π Project Insights</h2>
<div class="insights-grid">
"""
# Add colorful insight cards
if train_samples > 0:
status_text += f"""
<div class="insight-card card-blue">
<div class="insight-number">{train_samples:,}</div>
<div class="insight-label">Training Samples</div>
</div>
"""
if test_samples > 0:
status_text += f"""
<div class="insight-card card-green">
<div class="insight-number">{test_samples:,}</div>
<div class="insight-label">Test Samples</div>
</div>
"""
if audio_count > 0:
status_text += f"""
<div class="insight-card card-purple">
<div class="insight-number">{audio_count:,}</div>
<div class="insight-label">Audio Files</div>
</div>
"""
if vocab_size > 0:
status_text += f"""
<div class="insight-card card-orange">
<div class="insight-number">{vocab_size:,}</div>
<div class="insight-label">Unique Words</div>
</div>
"""
if status['entities_extracted']:
status_text += f"""
<div class="insight-card card-teal">
<div class="insight-number">{status['entity_count']}</div>
<div class="insight-label">Caribbean Entities</div>
</div>
"""
status_text += """
</div>
</div>
<div class="status-section">
<h2>π§ System Status</h2>
<div class="status-grid">
"""
# Data Files Status
status_text += """
<div class="status-group">
<h3>π Data Files</h3>
"""
status_text += f"<div class='status-item'>{'β
' if status['train_data'] else 'β'} <strong>Training Data:</strong> {'Available from dataset' if status['train_data'] else 'Not loaded'}"
if train_samples > 0:
status_text += f" ({train_samples:,} samples)"
status_text += "</div>\n"
status_text += f"<div class='status-item'>{'β
' if status['test_data'] else 'β'} <strong>Test Data:</strong> {'Available from dataset' if status['test_data'] else 'Not loaded'}"
if test_samples > 0:
status_text += f" ({test_samples:,} samples)"
status_text += "</div>\n"
# Audio files status - show HF dataset status if available
if status['audio_from_hf']:
status_text += f"<div class='status-item'>β
<strong>Audio Files:</strong> Available from HF Dataset ({audio_count:,} files)</div>\n"
elif status['audio_files']:
status_text += f"<div class='status-item'>β
<strong>Audio Files:</strong> Available locally ({audio_count:,} files)</div>\n"
else:
status_text += f"<div class='status-item'>β οΈ <strong>Audio Files:</strong> Not Loaded</div>\n"
status_text += "</div>\n"
# OWSM Setup Status
status_text += """
<div class="status-group">
<h3>π€ OWSM Setup</h3>
"""
status_text += f"<div class='status-item'>{'β
' if status['espnet_installed'] else 'β'} <strong>ESPnet:</strong> {'Installed' if status['espnet_installed'] else 'Not Installed'}</div>\n"
flash_attn_status = status.get('flash_attention_available', False)
if flash_attn_status:
status_text += f"<div class='status-item'>β
<strong>Flash Attention:</strong> Available (A10G GPU optimized)</div>\n"
else:
status_text += f"<div class='status-item'>β οΈ <strong>Flash Attention:</strong> Not Available (should be installed for A10G GPU)</div>\n"
status_text += f"<div class='status-item'>{'β
' if status['entities_extracted'] else 'β'} <strong>Entities:</strong> {'Extracted' if status['entities_extracted'] else 'Not Extracted'}"
if status['entities_extracted']:
status_text += f" ({status['entity_count']} entities)"
status_text += "</div>\n"
status_text += f"<div class='status-item'>{'β
' if status['model_trained'] else 'β'} <strong>Model:</strong> {'Trained' if status['model_trained'] else 'Not Trained'}</div>\n"
status_text += "</div>\n"
status_text += """
</div>
</div>
<div class="workflow-section">
<h2>π Quick Navigation</h2>
<p class="workflow-description">Jump to the tools you need to work with the Caribbean Voices dataset:</p>
</div>
"""
return status_text
|