Add configurable augmentation settings in UI and persistent logging
Browse files- Add UI controls for speed augmentation (min/max/count) and SpecAugment parameters
- Make augmentation settings configurable before training starts
- Implement persistent logging that survives space restarts
- Add log download functionality in training UI
- Logs are saved to persistent location and can be downloaded
- training/whisper_trainer.py +89 -22
- ui/interface.py +71 -4
- utils/logging.py +116 -0
training/whisper_trainer.py
CHANGED
|
@@ -27,6 +27,7 @@ from training.augmentation import (
|
|
| 27 |
get_deterministic_speed_factor_from_id,
|
| 28 |
expand_dataset_with_speed_augmentation,
|
| 29 |
)
|
|
|
|
| 30 |
|
| 31 |
# Disable dataset caching to save disk space
|
| 32 |
disable_caching()
|
|
@@ -199,7 +200,19 @@ def get_cache_key(dataset_name: str, model_name: str, split: str, seed: int) ->
|
|
| 199 |
return hashlib.md5(cache_string.encode()).hexdigest()
|
| 200 |
|
| 201 |
|
| 202 |
-
def prepare_whisper_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
"""
|
| 204 |
Prepare dataset for Whisper training using Hugging Face Datasets.
|
| 205 |
Supports caching to avoid reprocessing.
|
|
@@ -300,10 +313,16 @@ def prepare_whisper_dataset(dataset, processor, dataset_name: str = None, model_
|
|
| 300 |
feat = feat[0:1]
|
| 301 |
|
| 302 |
# Apply spectrogram augmentations (SpecAugment, time warping) to features (only during training)
|
| 303 |
-
if is_training:
|
| 304 |
# feat is [1, n_mels, seq_len], remove batch dim for augmentation: [n_mels, seq_len]
|
| 305 |
feat_2d = feat[0] # Remove batch dimension
|
| 306 |
-
feat_2d = apply_spectrogram_augmentations(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
# Add batch dimension back: [1, n_mels, seq_len]
|
| 308 |
feat = np.expand_dims(feat_2d, axis=0)
|
| 309 |
|
|
@@ -400,15 +419,35 @@ def prepare_whisper_dataset(dataset, processor, dataset_name: str = None, model_
|
|
| 400 |
return dataset
|
| 401 |
|
| 402 |
|
| 403 |
-
def run_whisper_training_progress(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
"""
|
| 405 |
Run Whisper training with progress tracking using HuggingFace transformers.
|
| 406 |
Full integration with HuggingFace training features.
|
| 407 |
"""
|
|
|
|
|
|
|
|
|
|
| 408 |
try:
|
| 409 |
if progress:
|
| 410 |
progress(0, desc="Preparing Whisper training...")
|
| 411 |
|
|
|
|
|
|
|
|
|
|
| 412 |
# Check prerequisites
|
| 413 |
if not os.path.exists(ENTITIES_PATH):
|
| 414 |
raise FileNotFoundError(
|
|
@@ -442,22 +481,42 @@ def run_whisper_training_progress(epochs: int, batch_size: int, learning_rate: f
|
|
| 442 |
train_full = train_full.cast_column("audio", Audio(sampling_rate=TARGET_SR))
|
| 443 |
|
| 444 |
# Expand dataset with speed augmentation (proactive augmentation)
|
| 445 |
-
# Creates
|
| 446 |
-
if
|
| 447 |
-
progress
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
# Create train/val split AFTER expansion
|
| 463 |
if progress:
|
|
@@ -524,7 +583,12 @@ def run_whisper_training_progress(epochs: int, batch_size: int, learning_rate: f
|
|
| 524 |
dataset_name=HF_DATASET_NAME,
|
| 525 |
model_name=WHISPER_MODEL_NAME,
|
| 526 |
split="train",
|
| 527 |
-
use_cache=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
)
|
| 529 |
|
| 530 |
if progress:
|
|
@@ -536,7 +600,8 @@ def run_whisper_training_progress(epochs: int, batch_size: int, learning_rate: f
|
|
| 536 |
dataset_name=HF_DATASET_NAME,
|
| 537 |
model_name=WHISPER_MODEL_NAME,
|
| 538 |
split="val",
|
| 539 |
-
use_cache=True
|
|
|
|
| 540 |
)
|
| 541 |
|
| 542 |
# Training arguments
|
|
@@ -649,12 +714,14 @@ def run_whisper_training_progress(epochs: int, batch_size: int, learning_rate: f
|
|
| 649 |
The model is now ready for inference!
|
| 650 |
"""
|
| 651 |
|
|
|
|
| 652 |
return success_msg, final_metrics
|
| 653 |
|
| 654 |
except Exception as e:
|
| 655 |
import traceback
|
| 656 |
error_msg = f"❌ Error during Whisper training: {str(e)}\n\n{traceback.format_exc()}"
|
| 657 |
print(error_msg)
|
|
|
|
| 658 |
if progress:
|
| 659 |
progress(1.0, desc="Error!")
|
| 660 |
return error_msg, None
|
|
|
|
| 27 |
get_deterministic_speed_factor_from_id,
|
| 28 |
expand_dataset_with_speed_augmentation,
|
| 29 |
)
|
| 30 |
+
from utils.logging import PersistentLogger, get_latest_log_file, get_log_directory
|
| 31 |
|
| 32 |
# Disable dataset caching to save disk space
|
| 33 |
disable_caching()
|
|
|
|
| 200 |
return hashlib.md5(cache_string.encode()).hexdigest()
|
| 201 |
|
| 202 |
|
| 203 |
+
def prepare_whisper_dataset(
|
| 204 |
+
dataset,
|
| 205 |
+
processor,
|
| 206 |
+
dataset_name: str = None,
|
| 207 |
+
model_name: str = None,
|
| 208 |
+
split: str = None,
|
| 209 |
+
use_cache: bool = True,
|
| 210 |
+
specaug_enabled: bool = True,
|
| 211 |
+
specaug_time_mask: int = 27,
|
| 212 |
+
specaug_freq_mask: int = 10,
|
| 213 |
+
specaug_time_warp: bool = True,
|
| 214 |
+
specaug_warp_param: int = 40,
|
| 215 |
+
):
|
| 216 |
"""
|
| 217 |
Prepare dataset for Whisper training using Hugging Face Datasets.
|
| 218 |
Supports caching to avoid reprocessing.
|
|
|
|
| 313 |
feat = feat[0:1]
|
| 314 |
|
| 315 |
# Apply spectrogram augmentations (SpecAugment, time warping) to features (only during training)
|
| 316 |
+
if is_training and specaug_enabled:
|
| 317 |
# feat is [1, n_mels, seq_len], remove batch dim for augmentation: [n_mels, seq_len]
|
| 318 |
feat_2d = feat[0] # Remove batch dimension
|
| 319 |
+
feat_2d = apply_spectrogram_augmentations(
|
| 320 |
+
feat_2d,
|
| 321 |
+
time_mask_param=specaug_time_mask,
|
| 322 |
+
freq_mask_param=specaug_freq_mask,
|
| 323 |
+
apply_time_warp=specaug_time_warp,
|
| 324 |
+
warp_param=specaug_warp_param,
|
| 325 |
+
)
|
| 326 |
# Add batch dimension back: [1, n_mels, seq_len]
|
| 327 |
feat = np.expand_dims(feat_2d, axis=0)
|
| 328 |
|
|
|
|
| 419 |
return dataset
|
| 420 |
|
| 421 |
|
| 422 |
+
def run_whisper_training_progress(
|
| 423 |
+
epochs: int,
|
| 424 |
+
batch_size: int,
|
| 425 |
+
learning_rate: float,
|
| 426 |
+
speed_aug_enabled: bool = True,
|
| 427 |
+
speed_factor_min: float = 0.9,
|
| 428 |
+
speed_factor_max: float = 1.1,
|
| 429 |
+
speed_factor_count: int = 3,
|
| 430 |
+
specaug_enabled: bool = True,
|
| 431 |
+
specaug_time_mask: int = 27,
|
| 432 |
+
specaug_freq_mask: int = 10,
|
| 433 |
+
specaug_time_warp: bool = True,
|
| 434 |
+
specaug_warp_param: int = 40,
|
| 435 |
+
progress=None
|
| 436 |
+
) -> Tuple[str, Optional[Dict[str, Any]]]:
|
| 437 |
"""
|
| 438 |
Run Whisper training with progress tracking using HuggingFace transformers.
|
| 439 |
Full integration with HuggingFace training features.
|
| 440 |
"""
|
| 441 |
+
# Set up persistent logging
|
| 442 |
+
logger = PersistentLogger("whisper_training")
|
| 443 |
+
|
| 444 |
try:
|
| 445 |
if progress:
|
| 446 |
progress(0, desc="Preparing Whisper training...")
|
| 447 |
|
| 448 |
+
print(f"📝 Training logs will be saved to: {get_log_directory()}")
|
| 449 |
+
print(f"📝 Latest log file: {get_latest_log_file('whisper_training')}")
|
| 450 |
+
|
| 451 |
# Check prerequisites
|
| 452 |
if not os.path.exists(ENTITIES_PATH):
|
| 453 |
raise FileNotFoundError(
|
|
|
|
| 481 |
train_full = train_full.cast_column("audio", Audio(sampling_rate=TARGET_SR))
|
| 482 |
|
| 483 |
# Expand dataset with speed augmentation (proactive augmentation)
|
| 484 |
+
# Creates multiple versions of each sample based on speed factors
|
| 485 |
+
if speed_aug_enabled:
|
| 486 |
+
if progress:
|
| 487 |
+
progress(0.12, desc="Expanding dataset with speed augmentation...")
|
| 488 |
+
|
| 489 |
+
# Generate speed factors from min/max/count
|
| 490 |
+
if speed_factor_count == 1:
|
| 491 |
+
speed_factors = [1.0]
|
| 492 |
+
elif speed_factor_count == 2:
|
| 493 |
+
speed_factors = [speed_factor_min, speed_factor_max]
|
| 494 |
+
else:
|
| 495 |
+
# Generate evenly spaced factors including min, max, and intermediate values
|
| 496 |
+
speed_factors = [
|
| 497 |
+
speed_factor_min + (speed_factor_max - speed_factor_min) * i / (speed_factor_count - 1)
|
| 498 |
+
for i in range(speed_factor_count)
|
| 499 |
+
]
|
| 500 |
+
# Ensure 1.0 is included if it's within range
|
| 501 |
+
if speed_factor_min <= 1.0 <= speed_factor_max:
|
| 502 |
+
speed_factors.append(1.0)
|
| 503 |
+
speed_factors = sorted(set(speed_factors)) # Remove duplicates and sort
|
| 504 |
+
|
| 505 |
+
print("\n" + "=" * 70)
|
| 506 |
+
print("EXPANDING DATASET WITH SPEED AUGMENTATION")
|
| 507 |
+
print("=" * 70)
|
| 508 |
+
print(f"Speed factors: {speed_factors}")
|
| 509 |
+
train_full = expand_dataset_with_speed_augmentation(
|
| 510 |
+
train_full,
|
| 511 |
+
speed_factors=speed_factors,
|
| 512 |
+
id_column="id",
|
| 513 |
+
audio_column="audio",
|
| 514 |
+
transcription_column="transcription",
|
| 515 |
+
target_sr=TARGET_SR,
|
| 516 |
+
)
|
| 517 |
+
print("=" * 70 + "\n")
|
| 518 |
+
else:
|
| 519 |
+
print("⚠ Speed augmentation disabled - using original dataset size")
|
| 520 |
|
| 521 |
# Create train/val split AFTER expansion
|
| 522 |
if progress:
|
|
|
|
| 583 |
dataset_name=HF_DATASET_NAME,
|
| 584 |
model_name=WHISPER_MODEL_NAME,
|
| 585 |
split="train",
|
| 586 |
+
use_cache=True,
|
| 587 |
+
specaug_enabled=specaug_enabled,
|
| 588 |
+
specaug_time_mask=specaug_time_mask,
|
| 589 |
+
specaug_freq_mask=specaug_freq_mask,
|
| 590 |
+
specaug_time_warp=specaug_time_warp,
|
| 591 |
+
specaug_warp_param=specaug_warp_param,
|
| 592 |
)
|
| 593 |
|
| 594 |
if progress:
|
|
|
|
| 600 |
dataset_name=HF_DATASET_NAME,
|
| 601 |
model_name=WHISPER_MODEL_NAME,
|
| 602 |
split="val",
|
| 603 |
+
use_cache=True,
|
| 604 |
+
specaug_enabled=False, # No augmentation for validation
|
| 605 |
)
|
| 606 |
|
| 607 |
# Training arguments
|
|
|
|
| 714 |
The model is now ready for inference!
|
| 715 |
"""
|
| 716 |
|
| 717 |
+
logger.close()
|
| 718 |
return success_msg, final_metrics
|
| 719 |
|
| 720 |
except Exception as e:
|
| 721 |
import traceback
|
| 722 |
error_msg = f"❌ Error during Whisper training: {str(e)}\n\n{traceback.format_exc()}"
|
| 723 |
print(error_msg)
|
| 724 |
+
logger.close()
|
| 725 |
if progress:
|
| 726 |
progress(1.0, desc="Error!")
|
| 727 |
return error_msg, None
|
ui/interface.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""Gradio UI interface for Caribbean Voices OWSM platform."""
|
| 2 |
import gradio as gr
|
| 3 |
import time
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
from datetime import datetime
|
| 6 |
|
|
@@ -12,6 +13,7 @@ from training.whisper_trainer import run_whisper_training_progress
|
|
| 12 |
from models.inference import transcribe_audio, run_inference_owsm
|
| 13 |
from models.loader import get_available_models
|
| 14 |
from data.loader import load_data_from_hf_dataset
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def create_interface():
|
|
@@ -218,19 +220,84 @@ def create_interface():
|
|
| 218 |
|
| 219 |
with gr.Row():
|
| 220 |
with gr.Column():
|
|
|
|
| 221 |
whisper_train_epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs")
|
| 222 |
whisper_train_batch_size = gr.Slider(1, 32, value=4, step=1, label="Batch Size")
|
| 223 |
whisper_train_lr = gr.Slider(1e-6, 1e-3, value=3e-5, step=1e-6, label="Learning Rate")
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
with gr.Column():
|
| 227 |
whisper_train_output = gr.Markdown()
|
| 228 |
whisper_train_metrics = gr.JSON(label="Training Metrics")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
whisper_train_btn.click(
|
| 231 |
-
fn=
|
| 232 |
-
inputs=[
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
)
|
| 235 |
|
| 236 |
# Tab 5: Inference
|
|
|
|
| 1 |
"""Gradio UI interface for Caribbean Voices OWSM platform."""
|
| 2 |
import gradio as gr
|
| 3 |
import time
|
| 4 |
+
import os
|
| 5 |
from pathlib import Path
|
| 6 |
from datetime import datetime
|
| 7 |
|
|
|
|
| 13 |
from models.inference import transcribe_audio, run_inference_owsm
|
| 14 |
from models.loader import get_available_models
|
| 15 |
from data.loader import load_data_from_hf_dataset
|
| 16 |
+
from utils.logging import get_latest_log_file, get_all_log_files, get_log_directory
|
| 17 |
|
| 18 |
|
| 19 |
def create_interface():
|
|
|
|
| 220 |
|
| 221 |
with gr.Row():
|
| 222 |
with gr.Column():
|
| 223 |
+
gr.Markdown("#### Training Hyperparameters")
|
| 224 |
whisper_train_epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs")
|
| 225 |
whisper_train_batch_size = gr.Slider(1, 32, value=4, step=1, label="Batch Size")
|
| 226 |
whisper_train_lr = gr.Slider(1e-6, 1e-3, value=3e-5, step=1e-6, label="Learning Rate")
|
| 227 |
+
|
| 228 |
+
gr.Markdown("#### Speed Augmentation")
|
| 229 |
+
gr.Markdown("Speed factors for dataset expansion (creates multiple versions of each sample)")
|
| 230 |
+
speed_aug_enabled = gr.Checkbox(value=True, label="Enable Speed Augmentation")
|
| 231 |
+
speed_factor_min = gr.Slider(0.8, 1.0, value=0.9, step=0.05, label="Min Speed Factor")
|
| 232 |
+
speed_factor_max = gr.Slider(1.0, 1.2, value=1.1, step=0.05, label="Max Speed Factor")
|
| 233 |
+
speed_factor_count = gr.Slider(2, 5, value=3, step=1, label="Number of Speed Variants")
|
| 234 |
+
|
| 235 |
+
gr.Markdown("#### SpecAugment Parameters")
|
| 236 |
+
gr.Markdown("Spectrogram augmentation settings (applied during training)")
|
| 237 |
+
specaug_enabled = gr.Checkbox(value=True, label="Enable SpecAugment")
|
| 238 |
+
specaug_time_mask = gr.Slider(0, 50, value=27, step=1, label="Time Mask Parameter")
|
| 239 |
+
specaug_freq_mask = gr.Slider(0, 20, value=10, step=1, label="Frequency Mask Parameter")
|
| 240 |
+
specaug_time_warp = gr.Checkbox(value=True, label="Enable Time Warping")
|
| 241 |
+
specaug_warp_param = gr.Slider(0, 80, value=40, step=5, label="Time Warp Parameter")
|
| 242 |
+
|
| 243 |
+
whisper_train_btn = gr.Button("Start Whisper Training", variant="primary", size="lg")
|
| 244 |
|
| 245 |
with gr.Column():
|
| 246 |
whisper_train_output = gr.Markdown()
|
| 247 |
whisper_train_metrics = gr.JSON(label="Training Metrics")
|
| 248 |
+
|
| 249 |
+
gr.Markdown("#### Training Logs")
|
| 250 |
+
log_info = gr.Markdown(f"Log directory: `{get_log_directory()}`")
|
| 251 |
+
latest_log_file = gr.File(
|
| 252 |
+
label="Download Latest Training Log",
|
| 253 |
+
visible=False
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
def update_log_download():
|
| 257 |
+
latest = get_latest_log_file("whisper_training")
|
| 258 |
+
if latest and os.path.exists(latest):
|
| 259 |
+
return gr.File(value=latest, visible=True)
|
| 260 |
+
return gr.File(visible=False)
|
| 261 |
+
|
| 262 |
+
refresh_log_btn = gr.Button("🔄 Refresh Logs", variant="secondary", size="sm")
|
| 263 |
+
refresh_log_btn.click(
|
| 264 |
+
fn=update_log_download,
|
| 265 |
+
outputs=[latest_log_file]
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
def run_training_with_log_refresh(
|
| 269 |
+
epochs, batch_size, lr,
|
| 270 |
+
speed_aug_enabled, speed_factor_min, speed_factor_max, speed_factor_count,
|
| 271 |
+
specaug_enabled, specaug_time_mask, specaug_freq_mask, specaug_time_warp, specaug_warp_param,
|
| 272 |
+
progress=gr.Progress()
|
| 273 |
+
):
|
| 274 |
+
"""Run training and refresh log download after completion."""
|
| 275 |
+
result = run_whisper_training_progress(
|
| 276 |
+
epochs, batch_size, lr,
|
| 277 |
+
speed_aug_enabled, speed_factor_min, speed_factor_max, speed_factor_count,
|
| 278 |
+
specaug_enabled, specaug_time_mask, specaug_freq_mask, specaug_time_warp, specaug_warp_param,
|
| 279 |
+
progress
|
| 280 |
+
)
|
| 281 |
+
latest_log = update_log_download()
|
| 282 |
+
return result[0], result[1], latest_log
|
| 283 |
|
| 284 |
whisper_train_btn.click(
|
| 285 |
+
fn=run_training_with_log_refresh,
|
| 286 |
+
inputs=[
|
| 287 |
+
whisper_train_epochs,
|
| 288 |
+
whisper_train_batch_size,
|
| 289 |
+
whisper_train_lr,
|
| 290 |
+
speed_aug_enabled,
|
| 291 |
+
speed_factor_min,
|
| 292 |
+
speed_factor_max,
|
| 293 |
+
speed_factor_count,
|
| 294 |
+
specaug_enabled,
|
| 295 |
+
specaug_time_mask,
|
| 296 |
+
specaug_freq_mask,
|
| 297 |
+
specaug_time_warp,
|
| 298 |
+
specaug_warp_param,
|
| 299 |
+
],
|
| 300 |
+
outputs=[whisper_train_output, whisper_train_metrics, latest_log_file]
|
| 301 |
)
|
| 302 |
|
| 303 |
# Tab 5: Inference
|
utils/logging.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Persistent logging utility for HuggingFace Spaces.
|
| 3 |
+
Logs are written to files that persist across space restarts.
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import Optional
|
| 10 |
+
|
| 11 |
+
# Try to use persistent storage if available
|
| 12 |
+
# HF Spaces may have /tmp or other persistent locations
|
| 13 |
+
PERSISTENT_LOG_DIR = None
|
| 14 |
+
|
| 15 |
+
# Try common persistent locations
|
| 16 |
+
for log_dir in [
|
| 17 |
+
"/tmp/logs", # Common temp location (may persist)
|
| 18 |
+
"/persistent/logs", # Some HF Spaces have this
|
| 19 |
+
os.path.join(os.path.expanduser("~"), ".cache", "caribbean-voices", "logs"), # User cache
|
| 20 |
+
]:
|
| 21 |
+
try:
|
| 22 |
+
Path(log_dir).mkdir(parents=True, exist_ok=True)
|
| 23 |
+
# Test write
|
| 24 |
+
test_file = os.path.join(log_dir, ".test_write")
|
| 25 |
+
with open(test_file, "w") as f:
|
| 26 |
+
f.write("test")
|
| 27 |
+
os.remove(test_file)
|
| 28 |
+
PERSISTENT_LOG_DIR = log_dir
|
| 29 |
+
break
|
| 30 |
+
except (PermissionError, OSError):
|
| 31 |
+
continue
|
| 32 |
+
|
| 33 |
+
# Fallback to current directory if no persistent location found
|
| 34 |
+
if PERSISTENT_LOG_DIR is None:
|
| 35 |
+
PERSISTENT_LOG_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
|
| 36 |
+
Path(PERSISTENT_LOG_DIR).mkdir(parents=True, exist_ok=True)
|
| 37 |
+
|
| 38 |
+
print(f"📝 Log directory: {PERSISTENT_LOG_DIR}")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class TeeOutput:
|
| 42 |
+
"""Tee output to both stdout and a file."""
|
| 43 |
+
|
| 44 |
+
def __init__(self, file_handle, original_stdout):
|
| 45 |
+
self.file = file_handle
|
| 46 |
+
self.stdout = original_stdout
|
| 47 |
+
|
| 48 |
+
def write(self, message):
|
| 49 |
+
self.stdout.write(message)
|
| 50 |
+
self.file.write(message)
|
| 51 |
+
self.file.flush()
|
| 52 |
+
|
| 53 |
+
def flush(self):
|
| 54 |
+
self.stdout.flush()
|
| 55 |
+
self.file.flush()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class PersistentLogger:
|
| 59 |
+
"""Logger that redirects stdout/stderr to both console and persistent log files."""
|
| 60 |
+
|
| 61 |
+
def __init__(self, log_name: str = "training"):
|
| 62 |
+
self.log_name = log_name
|
| 63 |
+
self.log_file = os.path.join(PERSISTENT_LOG_DIR, f"{log_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
| 64 |
+
self.log_handle = open(self.log_file, "a", buffering=1) # Line buffered
|
| 65 |
+
|
| 66 |
+
# Save original stdout/stderr
|
| 67 |
+
self.original_stdout = sys.stdout
|
| 68 |
+
self.original_stderr = sys.stderr
|
| 69 |
+
|
| 70 |
+
# Create tee outputs
|
| 71 |
+
self.tee_stdout = TeeOutput(self.log_handle, self.original_stdout)
|
| 72 |
+
self.tee_stderr = TeeOutput(self.log_handle, self.original_stderr)
|
| 73 |
+
|
| 74 |
+
# Redirect stdout/stderr
|
| 75 |
+
sys.stdout = self.tee_stdout
|
| 76 |
+
sys.stderr = self.tee_stderr
|
| 77 |
+
|
| 78 |
+
print(f"📝 Logging to: {self.log_file}")
|
| 79 |
+
|
| 80 |
+
def close(self):
|
| 81 |
+
"""Close the log file and restore original stdout/stderr."""
|
| 82 |
+
# Restore original stdout/stderr
|
| 83 |
+
sys.stdout = self.original_stdout
|
| 84 |
+
sys.stderr = self.original_stderr
|
| 85 |
+
|
| 86 |
+
# Close log file
|
| 87 |
+
if self.log_handle:
|
| 88 |
+
self.log_handle.close()
|
| 89 |
+
self.log_handle = None
|
| 90 |
+
|
| 91 |
+
def __enter__(self):
|
| 92 |
+
return self
|
| 93 |
+
|
| 94 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 95 |
+
self.close()
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_latest_log_file(log_name: str = "training") -> Optional[str]:
|
| 99 |
+
"""Get the path to the latest log file for a given log name."""
|
| 100 |
+
log_files = list(Path(PERSISTENT_LOG_DIR).glob(f"{log_name}_*.log"))
|
| 101 |
+
if not log_files:
|
| 102 |
+
return None
|
| 103 |
+
# Sort by modification time, return most recent
|
| 104 |
+
latest = max(log_files, key=lambda p: p.stat().st_mtime)
|
| 105 |
+
return str(latest)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def get_all_log_files(log_name: str = "training") -> list:
|
| 109 |
+
"""Get all log files for a given log name, sorted by modification time (newest first)."""
|
| 110 |
+
log_files = list(Path(PERSISTENT_LOG_DIR).glob(f"{log_name}_*.log"))
|
| 111 |
+
return sorted(log_files, key=lambda p: p.stat().st_mtime, reverse=True)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def get_log_directory() -> str:
|
| 115 |
+
"""Get the log directory path."""
|
| 116 |
+
return PERSISTENT_LOG_DIR
|