Separate ESPnet and Whisper training modules with clear naming
Browse files- Created espnet_trainer.py: ESPnet-specific training (no HuggingFace fallbacks)
- Created whisper_trainer.py: Full HuggingFace transformers integration
- Updated UI with separate ESPnet and Whisper training tabs
- Fixed imports to use relative imports in training/__init__.py
- Removed old trainer.py (backed up as trainer_old.py.bak)
- training/__init__.py +14 -1
- training/espnet_trainer.py +211 -0
- training/whisper_trainer.py +342 -0
- ui/interface.py +68 -25
training/__init__.py
CHANGED
|
@@ -1,2 +1,15 @@
|
|
| 1 |
-
"""
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Training modules for Caribbean Voices Hackathon.
|
| 3 |
|
| 4 |
+
Separate training modules:
|
| 5 |
+
- espnet_trainer: ESPnet-specific training (no HuggingFace dependencies)
|
| 6 |
+
- whisper_trainer: Whisper training with full HuggingFace integration
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
from .espnet_trainer import run_espnet_training_progress
|
| 10 |
+
from .whisper_trainer import run_whisper_training_progress
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
'run_espnet_training_progress',
|
| 14 |
+
'run_whisper_training_progress',
|
| 15 |
+
]
|
training/espnet_trainer.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ESPnet-specific training for OWSM models.
|
| 3 |
+
Uses ESPnet's native training framework - NO HuggingFace dependencies.
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import random
|
| 10 |
+
from typing import Tuple, Optional, Dict, Any
|
| 11 |
+
from datasets import load_dataset, Audio
|
| 12 |
+
from data.manager import ENTITIES_PATH, MODEL_OUTPUT_DIR, BASE_DIR
|
| 13 |
+
|
| 14 |
+
# Set seeds for reproducibility
|
| 15 |
+
SEED = 42
|
| 16 |
+
random.seed(SEED)
|
| 17 |
+
np.random.seed(SEED)
|
| 18 |
+
torch.manual_seed(SEED)
|
| 19 |
+
if torch.cuda.is_available():
|
| 20 |
+
torch.cuda.manual_seed_all(SEED)
|
| 21 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 22 |
+
|
| 23 |
+
# ESPnet model configuration
|
| 24 |
+
ESPNET_MODEL_NAME = "espnet/owsm_v3.1_ebf_small"
|
| 25 |
+
TARGET_SR = 16000
|
| 26 |
+
MAX_AUDIO_LENGTH = 30 # seconds
|
| 27 |
+
HF_DATASET_NAME = "shaun3141/caribbean-voices-hackathon"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def run_espnet_training_progress(epochs: int, batch_size: int, learning_rate: float, progress=None) -> Tuple[str, Optional[Dict[str, Any]]]:
|
| 31 |
+
"""
|
| 32 |
+
Run ESPnet OWSM training with progress tracking.
|
| 33 |
+
Uses ESPnet's native training framework - NO HuggingFace fallbacks.
|
| 34 |
+
"""
|
| 35 |
+
try:
|
| 36 |
+
if progress:
|
| 37 |
+
progress(0, desc="Initializing ESPnet training...")
|
| 38 |
+
|
| 39 |
+
# Check ESPnet is installed - NO FALLBACKS
|
| 40 |
+
try:
|
| 41 |
+
from espnet2.bin.s2t_inference import Speech2Text
|
| 42 |
+
except ImportError as e:
|
| 43 |
+
raise RuntimeError(
|
| 44 |
+
f"β ESPnet is not installed!\n\n"
|
| 45 |
+
f"ESPnet is required for ESPnet model training.\n"
|
| 46 |
+
f"Install with: pip install espnet espnet_model_zoo\n\n"
|
| 47 |
+
f"Original error: {e}"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Check prerequisites
|
| 51 |
+
if not os.path.exists(ENTITIES_PATH):
|
| 52 |
+
raise FileNotFoundError(
|
| 53 |
+
f"β Entities file not found at {ENTITIES_PATH}. "
|
| 54 |
+
f"Please extract entities first using the entity extraction tool."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
if progress:
|
| 58 |
+
progress(0.05, desc="Loading entities...")
|
| 59 |
+
with open(ENTITIES_PATH, 'r') as f:
|
| 60 |
+
entities_data = json.load(f)
|
| 61 |
+
|
| 62 |
+
high_value_entities = set(entities_data['entities'])
|
| 63 |
+
print(f"Loaded {len(high_value_entities)} high-value entities")
|
| 64 |
+
|
| 65 |
+
if progress:
|
| 66 |
+
progress(0.1, desc="Loading dataset from Hugging Face...")
|
| 67 |
+
|
| 68 |
+
# Load dataset from HF
|
| 69 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 70 |
+
print(f"Loading dataset: {HF_DATASET_NAME}")
|
| 71 |
+
dataset = load_dataset(HF_DATASET_NAME, token=hf_token)
|
| 72 |
+
|
| 73 |
+
if 'train' not in dataset:
|
| 74 |
+
raise ValueError(f"β Dataset {HF_DATASET_NAME} does not contain a 'train' split.")
|
| 75 |
+
|
| 76 |
+
train_full = dataset['train']
|
| 77 |
+
print(f"Loaded {len(train_full):,} total training samples")
|
| 78 |
+
|
| 79 |
+
# Cast to Audio to ensure correct sampling rate
|
| 80 |
+
train_full = train_full.cast_column("audio", Audio(sampling_rate=TARGET_SR))
|
| 81 |
+
|
| 82 |
+
# Create train/val split
|
| 83 |
+
if progress:
|
| 84 |
+
progress(0.15, desc="Creating train/val split...")
|
| 85 |
+
|
| 86 |
+
split_dataset = train_full.train_test_split(test_size=0.1, seed=SEED)
|
| 87 |
+
train_dataset_raw = split_dataset['train']
|
| 88 |
+
val_dataset_raw = split_dataset['test']
|
| 89 |
+
|
| 90 |
+
print(f"Train: {len(train_dataset_raw):,} samples")
|
| 91 |
+
print(f"Val: {len(val_dataset_raw):,} samples")
|
| 92 |
+
|
| 93 |
+
# Load ESPnet model - NO FALLBACKS
|
| 94 |
+
if progress:
|
| 95 |
+
progress(0.2, desc=f"Loading ESPnet model: {ESPNET_MODEL_NAME}...")
|
| 96 |
+
print(f"\n{'='*70}")
|
| 97 |
+
print(f"Loading ESPnet model: {ESPNET_MODEL_NAME}")
|
| 98 |
+
print(f"{'='*70}")
|
| 99 |
+
|
| 100 |
+
espnet_model = Speech2Text.from_pretrained(ESPNET_MODEL_NAME)
|
| 101 |
+
print("β ESPnet model loaded successfully")
|
| 102 |
+
|
| 103 |
+
# Extract tokenizer from ESPnet model
|
| 104 |
+
if not hasattr(espnet_model, 'tokenizer'):
|
| 105 |
+
raise RuntimeError(
|
| 106 |
+
f"β ESPnet model {ESPNET_MODEL_NAME} does not have a 'tokenizer' attribute. "
|
| 107 |
+
f"This is required for training. The model may not be compatible with fine-tuning."
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
if espnet_model.tokenizer is None:
|
| 111 |
+
raise RuntimeError(
|
| 112 |
+
f"β ESPnet model {ESPNET_MODEL_NAME} has a None tokenizer. "
|
| 113 |
+
f"This is required for training. The model may not be properly initialized."
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
espnet_tokenizer = espnet_model.tokenizer
|
| 117 |
+
print("β Tokenizer extracted from ESPnet model")
|
| 118 |
+
|
| 119 |
+
# Extract ASR model
|
| 120 |
+
if not hasattr(espnet_model, 'asr_model'):
|
| 121 |
+
raise RuntimeError(
|
| 122 |
+
f"β ESPnet model {ESPNET_MODEL_NAME} does not have an 'asr_model' attribute. "
|
| 123 |
+
f"This is required for training. The model may not be compatible with fine-tuning."
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
if espnet_model.asr_model is None:
|
| 127 |
+
raise RuntimeError(
|
| 128 |
+
f"β ESPnet model {ESPNET_MODEL_NAME} has a None asr_model. "
|
| 129 |
+
f"This is required for training. The model may not be properly initialized."
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
espnet_asr_model = espnet_model.asr_model
|
| 133 |
+
print("β ASR model extracted from ESPnet")
|
| 134 |
+
|
| 135 |
+
# ESPnet training requires ESPnet recipes
|
| 136 |
+
# For now, we'll provide clear instructions
|
| 137 |
+
if progress:
|
| 138 |
+
progress(0.3, desc="Preparing ESPnet training setup...")
|
| 139 |
+
|
| 140 |
+
print(f"\n{'='*70}")
|
| 141 |
+
print("ESPnet Training Setup")
|
| 142 |
+
print(f"{'='*70}")
|
| 143 |
+
print("ESPnet models require ESPnet's native training framework.")
|
| 144 |
+
print("To fine-tune ESPnet models, you need to:")
|
| 145 |
+
print("1. Set up an ESPnet recipe (e.g., egs2/librispeech/asr1)")
|
| 146 |
+
print("2. Modify the recipe to use your data")
|
| 147 |
+
print("3. Run the ESPnet training script")
|
| 148 |
+
print("\nThe model and tokenizer have been loaded successfully.")
|
| 149 |
+
print("You can use them with ESPnet's training recipes.")
|
| 150 |
+
print(f"{'='*70}\n")
|
| 151 |
+
|
| 152 |
+
# Save model info for ESPnet recipes
|
| 153 |
+
model_info = {
|
| 154 |
+
'model_name': ESPNET_MODEL_NAME,
|
| 155 |
+
'entities': list(high_value_entities),
|
| 156 |
+
'train_samples': len(train_dataset_raw),
|
| 157 |
+
'val_samples': len(val_dataset_raw),
|
| 158 |
+
'training_framework': 'espnet',
|
| 159 |
+
'note': 'This model requires ESPnet native training recipes for fine-tuning'
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 163 |
+
model_info_path = os.path.join(MODEL_OUTPUT_DIR, "espnet_model_info.json")
|
| 164 |
+
with open(model_info_path, 'w') as f:
|
| 165 |
+
json.dump(model_info, f, indent=2)
|
| 166 |
+
|
| 167 |
+
# Save entities
|
| 168 |
+
entities_output_path = os.path.join(MODEL_OUTPUT_DIR, "caribbean_entities.json")
|
| 169 |
+
with open(entities_output_path, 'w') as f:
|
| 170 |
+
json.dump(entities_data, f, indent=2)
|
| 171 |
+
|
| 172 |
+
if progress:
|
| 173 |
+
progress(1.0, desc="Complete!")
|
| 174 |
+
|
| 175 |
+
success_msg = f"""
|
| 176 |
+
## β
ESPnet Model Loaded Successfully!
|
| 177 |
+
|
| 178 |
+
**Model:** {ESPNET_MODEL_NAME}
|
| 179 |
+
**Output Directory:** {MODEL_OUTPUT_DIR}
|
| 180 |
+
|
| 181 |
+
**Model Components:**
|
| 182 |
+
- β ESPnet Speech2Text model loaded
|
| 183 |
+
- β Tokenizer extracted
|
| 184 |
+
- β ASR model extracted
|
| 185 |
+
|
| 186 |
+
**Files Saved:**
|
| 187 |
+
- Model info: `{model_info_path}`
|
| 188 |
+
- Entities: `{entities_output_path}`
|
| 189 |
+
|
| 190 |
+
**Next Steps:**
|
| 191 |
+
ESPnet models require ESPnet's native training framework for fine-tuning.
|
| 192 |
+
Use ESPnet training recipes to fine-tune this model.
|
| 193 |
+
|
| 194 |
+
**Training Data:**
|
| 195 |
+
- Train samples: {len(train_dataset_raw):,}
|
| 196 |
+
- Val samples: {len(val_dataset_raw):,}
|
| 197 |
+
- Entities: {len(high_value_entities)}
|
| 198 |
+
|
| 199 |
+
**Note:** This training interface loads the ESPnet model successfully.
|
| 200 |
+
For actual fine-tuning, use ESPnet's training recipes.
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
return success_msg, model_info
|
| 204 |
+
|
| 205 |
+
except Exception as e:
|
| 206 |
+
import traceback
|
| 207 |
+
error_msg = f"β Error during ESPnet training setup: {str(e)}\n\n{traceback.format_exc()}"
|
| 208 |
+
print(error_msg)
|
| 209 |
+
if progress:
|
| 210 |
+
progress(1.0, desc="Error!")
|
| 211 |
+
return error_msg, None
|
training/whisper_trainer.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Whisper training using HuggingFace transformers.
|
| 3 |
+
Full integration with HuggingFace training features.
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import random
|
| 10 |
+
from typing import Tuple, Optional, Dict, Any
|
| 11 |
+
from datasets import load_dataset, Audio
|
| 12 |
+
from transformers import (
|
| 13 |
+
WhisperProcessor,
|
| 14 |
+
WhisperForConditionalGeneration,
|
| 15 |
+
Seq2SeqTrainingArguments,
|
| 16 |
+
Seq2SeqTrainer,
|
| 17 |
+
DataCollatorForSeq2Seq,
|
| 18 |
+
EarlyStoppingCallback,
|
| 19 |
+
)
|
| 20 |
+
from owsm_model import OWSMWithEntityLoss
|
| 21 |
+
from data.manager import ENTITIES_PATH, MODEL_OUTPUT_DIR, BASE_DIR
|
| 22 |
+
|
| 23 |
+
# Set seeds for reproducibility
|
| 24 |
+
SEED = 42
|
| 25 |
+
random.seed(SEED)
|
| 26 |
+
np.random.seed(SEED)
|
| 27 |
+
torch.manual_seed(SEED)
|
| 28 |
+
if torch.cuda.is_available():
|
| 29 |
+
torch.cuda.manual_seed_all(SEED)
|
| 30 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 31 |
+
|
| 32 |
+
# Whisper model configuration
|
| 33 |
+
WHISPER_MODEL_NAME = "openai/whisper-small"
|
| 34 |
+
TARGET_SR = 16000
|
| 35 |
+
MAX_AUDIO_LENGTH = 30 # seconds
|
| 36 |
+
HF_DATASET_NAME = "shaun3141/caribbean-voices-hackathon"
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def compute_wer_metric(predictions, labels, tokenizer):
|
| 40 |
+
"""Compute Word Error Rate metric."""
|
| 41 |
+
try:
|
| 42 |
+
import jiwer
|
| 43 |
+
except ImportError:
|
| 44 |
+
# Fallback simple WER calculation if jiwer not available
|
| 45 |
+
def simple_wer(ref, hyp):
|
| 46 |
+
ref_words = ref.lower().split()
|
| 47 |
+
hyp_words = hyp.lower().split()
|
| 48 |
+
if len(ref_words) == 0:
|
| 49 |
+
return 1.0 if len(hyp_words) > 0 else 0.0
|
| 50 |
+
|
| 51 |
+
# Simple Levenshtein-like WER
|
| 52 |
+
ref_str = ' '.join(ref_words)
|
| 53 |
+
hyp_str = ' '.join(hyp_words)
|
| 54 |
+
if ref_str == hyp_str:
|
| 55 |
+
return 0.0
|
| 56 |
+
|
| 57 |
+
ref_set = set(ref_words)
|
| 58 |
+
hyp_set = set(hyp_words)
|
| 59 |
+
common = len(ref_set & hyp_set)
|
| 60 |
+
total_ref = len(ref_words)
|
| 61 |
+
return 1.0 - (common / total_ref) if total_ref > 0 else 1.0
|
| 62 |
+
|
| 63 |
+
# Decode predictions and labels
|
| 64 |
+
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
| 65 |
+
|
| 66 |
+
# Replace -100 with pad token for decoding
|
| 67 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
| 68 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
| 69 |
+
|
| 70 |
+
wer_scores = [simple_wer(ref, hyp) for ref, hyp in zip(decoded_labels, decoded_preds)]
|
| 71 |
+
return {"wer": np.mean(wer_scores)}
|
| 72 |
+
|
| 73 |
+
# Decode predictions and labels
|
| 74 |
+
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
| 75 |
+
|
| 76 |
+
# Replace -100 with pad token for decoding
|
| 77 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
| 78 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
| 79 |
+
|
| 80 |
+
# Compute WER using jiwer
|
| 81 |
+
wer = jiwer.wer(decoded_labels, decoded_preds)
|
| 82 |
+
return {"wer": wer}
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def prepare_whisper_dataset(dataset, processor):
|
| 86 |
+
"""
|
| 87 |
+
Prepare dataset for Whisper training using Hugging Face Datasets.
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def prepare_batch(batch):
|
| 91 |
+
"""Process a batch of examples."""
|
| 92 |
+
audio = batch["audio"]
|
| 93 |
+
transcriptions = batch["transcription"]
|
| 94 |
+
|
| 95 |
+
# Process audio with processor
|
| 96 |
+
inputs = processor(
|
| 97 |
+
[x["array"] for x in audio],
|
| 98 |
+
sampling_rate=TARGET_SR,
|
| 99 |
+
return_tensors="pt",
|
| 100 |
+
padding=True,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Process transcriptions
|
| 104 |
+
with processor.as_target_processor():
|
| 105 |
+
labels = processor(
|
| 106 |
+
transcriptions,
|
| 107 |
+
return_tensors="pt",
|
| 108 |
+
padding=True,
|
| 109 |
+
).input_ids
|
| 110 |
+
|
| 111 |
+
# Replace padding token id's of the labels by -100 so it's ignored by the loss
|
| 112 |
+
labels[labels == processor.tokenizer.pad_token_id] = -100
|
| 113 |
+
|
| 114 |
+
batch["input_features"] = inputs.input_features
|
| 115 |
+
batch["labels"] = labels
|
| 116 |
+
|
| 117 |
+
return batch
|
| 118 |
+
|
| 119 |
+
# Remove columns that are not needed
|
| 120 |
+
column_names = dataset.column_names
|
| 121 |
+
|
| 122 |
+
# Process in batches
|
| 123 |
+
dataset = dataset.map(
|
| 124 |
+
prepare_batch,
|
| 125 |
+
batched=True,
|
| 126 |
+
batch_size=16,
|
| 127 |
+
remove_columns=column_names,
|
| 128 |
+
desc="Preprocessing dataset",
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
return dataset
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def run_whisper_training_progress(epochs: int, batch_size: int, learning_rate: float, progress=None) -> Tuple[str, Optional[Dict[str, Any]]]:
|
| 135 |
+
"""
|
| 136 |
+
Run Whisper training with progress tracking using HuggingFace transformers.
|
| 137 |
+
Full integration with HuggingFace training features.
|
| 138 |
+
"""
|
| 139 |
+
try:
|
| 140 |
+
if progress:
|
| 141 |
+
progress(0, desc="Preparing Whisper training...")
|
| 142 |
+
|
| 143 |
+
# Check prerequisites
|
| 144 |
+
if not os.path.exists(ENTITIES_PATH):
|
| 145 |
+
raise FileNotFoundError(
|
| 146 |
+
f"β Entities file not found at {ENTITIES_PATH}. "
|
| 147 |
+
f"Please extract entities first using the entity extraction tool."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
if progress:
|
| 151 |
+
progress(0.05, desc="Loading entities...")
|
| 152 |
+
with open(ENTITIES_PATH, 'r') as f:
|
| 153 |
+
entities_data = json.load(f)
|
| 154 |
+
|
| 155 |
+
high_value_entities = set(entities_data['entities'])
|
| 156 |
+
print(f"Loaded {len(high_value_entities)} high-value entities")
|
| 157 |
+
|
| 158 |
+
if progress:
|
| 159 |
+
progress(0.1, desc="Loading dataset from Hugging Face...")
|
| 160 |
+
|
| 161 |
+
# Load dataset from HF
|
| 162 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 163 |
+
print(f"Loading dataset: {HF_DATASET_NAME}")
|
| 164 |
+
dataset = load_dataset(HF_DATASET_NAME, token=hf_token)
|
| 165 |
+
|
| 166 |
+
if 'train' not in dataset:
|
| 167 |
+
raise ValueError(f"β Dataset {HF_DATASET_NAME} does not contain a 'train' split.")
|
| 168 |
+
|
| 169 |
+
train_full = dataset['train']
|
| 170 |
+
print(f"Loaded {len(train_full):,} total training samples")
|
| 171 |
+
|
| 172 |
+
# Cast to Audio to ensure correct sampling rate
|
| 173 |
+
train_full = train_full.cast_column("audio", Audio(sampling_rate=TARGET_SR))
|
| 174 |
+
|
| 175 |
+
# Create train/val split
|
| 176 |
+
if progress:
|
| 177 |
+
progress(0.15, desc="Creating train/val split...")
|
| 178 |
+
|
| 179 |
+
split_dataset = train_full.train_test_split(test_size=0.1, seed=SEED)
|
| 180 |
+
train_dataset_raw = split_dataset['train']
|
| 181 |
+
val_dataset_raw = split_dataset['test']
|
| 182 |
+
|
| 183 |
+
print(f"Train: {len(train_dataset_raw):,} samples")
|
| 184 |
+
print(f"Val: {len(val_dataset_raw):,} samples")
|
| 185 |
+
|
| 186 |
+
# Load Whisper processor
|
| 187 |
+
if progress:
|
| 188 |
+
progress(0.2, desc=f"Loading Whisper processor: {WHISPER_MODEL_NAME}...")
|
| 189 |
+
print(f"\nLoading Whisper processor: {WHISPER_MODEL_NAME}")
|
| 190 |
+
|
| 191 |
+
processor = WhisperProcessor.from_pretrained(WHISPER_MODEL_NAME)
|
| 192 |
+
print(f"β Whisper processor loaded successfully")
|
| 193 |
+
|
| 194 |
+
# Load Whisper model
|
| 195 |
+
if progress:
|
| 196 |
+
progress(0.25, desc=f"Loading Whisper model: {WHISPER_MODEL_NAME}...")
|
| 197 |
+
print(f"\nLoading Whisper model: {WHISPER_MODEL_NAME}")
|
| 198 |
+
|
| 199 |
+
# Use our wrapper class with entity-weighted loss
|
| 200 |
+
model = OWSMWithEntityLoss.from_pretrained(
|
| 201 |
+
WHISPER_MODEL_NAME,
|
| 202 |
+
tokenizer=processor.tokenizer,
|
| 203 |
+
high_value_tokens=high_value_entities,
|
| 204 |
+
entity_weight=3.0,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
print(f"β Whisper model loaded successfully")
|
| 208 |
+
|
| 209 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 210 |
+
model.to(device)
|
| 211 |
+
print(f"Model on device: {device}")
|
| 212 |
+
|
| 213 |
+
# Prepare datasets
|
| 214 |
+
if progress:
|
| 215 |
+
progress(0.3, desc="Preprocessing training dataset...")
|
| 216 |
+
print("\nPreprocessing training dataset...")
|
| 217 |
+
train_dataset = prepare_whisper_dataset(train_dataset_raw, processor)
|
| 218 |
+
|
| 219 |
+
if progress:
|
| 220 |
+
progress(0.4, desc="Preprocessing validation dataset...")
|
| 221 |
+
print("Preprocessing validation dataset...")
|
| 222 |
+
val_dataset = prepare_whisper_dataset(val_dataset_raw, processor)
|
| 223 |
+
|
| 224 |
+
# Training arguments
|
| 225 |
+
if progress:
|
| 226 |
+
progress(0.5, desc="Setting up training arguments...")
|
| 227 |
+
|
| 228 |
+
training_args = Seq2SeqTrainingArguments(
|
| 229 |
+
output_dir=MODEL_OUTPUT_DIR,
|
| 230 |
+
per_device_train_batch_size=batch_size,
|
| 231 |
+
per_device_eval_batch_size=batch_size,
|
| 232 |
+
gradient_accumulation_steps=4,
|
| 233 |
+
learning_rate=learning_rate,
|
| 234 |
+
warmup_steps=500,
|
| 235 |
+
num_train_epochs=epochs,
|
| 236 |
+
evaluation_strategy="steps",
|
| 237 |
+
eval_steps=1000,
|
| 238 |
+
save_strategy="steps",
|
| 239 |
+
save_steps=1000,
|
| 240 |
+
logging_steps=100,
|
| 241 |
+
load_best_model_at_end=True,
|
| 242 |
+
metric_for_best_model="wer",
|
| 243 |
+
greater_is_better=False,
|
| 244 |
+
save_total_limit=3,
|
| 245 |
+
fp16=torch.cuda.is_available(),
|
| 246 |
+
dataloader_num_workers=4,
|
| 247 |
+
report_to="none",
|
| 248 |
+
seed=SEED,
|
| 249 |
+
predict_with_generate=True,
|
| 250 |
+
generation_max_length=200,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Data collator
|
| 254 |
+
data_collator = DataCollatorForSeq2Seq(
|
| 255 |
+
processor=processor,
|
| 256 |
+
model=model,
|
| 257 |
+
padding=True,
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Custom compute_metrics function for WER
|
| 261 |
+
def compute_metrics(eval_pred):
|
| 262 |
+
predictions, labels = eval_pred
|
| 263 |
+
return compute_wer_metric(predictions, labels, processor.tokenizer)
|
| 264 |
+
|
| 265 |
+
# Trainer
|
| 266 |
+
trainer = Seq2SeqTrainer(
|
| 267 |
+
model=model,
|
| 268 |
+
args=training_args,
|
| 269 |
+
train_dataset=train_dataset,
|
| 270 |
+
eval_dataset=val_dataset,
|
| 271 |
+
data_collator=data_collator,
|
| 272 |
+
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
| 273 |
+
compute_metrics=compute_metrics,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# Train
|
| 277 |
+
if progress:
|
| 278 |
+
progress(0.6, desc="Starting training...")
|
| 279 |
+
|
| 280 |
+
print("\n" + "=" * 70)
|
| 281 |
+
print("STARTING WHISPER TRAINING")
|
| 282 |
+
print("=" * 70)
|
| 283 |
+
print(f"Model: {WHISPER_MODEL_NAME}")
|
| 284 |
+
print(f"Epochs: {epochs}")
|
| 285 |
+
print(f"Batch Size: {batch_size}")
|
| 286 |
+
print(f"Learning Rate: {learning_rate}")
|
| 287 |
+
print(f"Train Samples: {len(train_dataset):,}")
|
| 288 |
+
print(f"Val Samples: {len(val_dataset):,}")
|
| 289 |
+
print("=" * 70)
|
| 290 |
+
|
| 291 |
+
trainer.train()
|
| 292 |
+
|
| 293 |
+
# Save final model
|
| 294 |
+
if progress:
|
| 295 |
+
progress(0.95, desc="Saving model...")
|
| 296 |
+
|
| 297 |
+
print(f"\nSaving model to {MODEL_OUTPUT_DIR}...")
|
| 298 |
+
model.save_pretrained(MODEL_OUTPUT_DIR)
|
| 299 |
+
processor.save_pretrained(MODEL_OUTPUT_DIR)
|
| 300 |
+
|
| 301 |
+
# Save entities for inference
|
| 302 |
+
entities_output_path = os.path.join(MODEL_OUTPUT_DIR, "caribbean_entities.json")
|
| 303 |
+
with open(entities_output_path, 'w') as f:
|
| 304 |
+
json.dump(entities_data, f, indent=2)
|
| 305 |
+
|
| 306 |
+
if progress:
|
| 307 |
+
progress(1.0, desc="Complete!")
|
| 308 |
+
|
| 309 |
+
final_metrics = trainer.evaluate()
|
| 310 |
+
wer = final_metrics.get('eval_wer', 'N/A')
|
| 311 |
+
loss = final_metrics.get('eval_loss', 'N/A')
|
| 312 |
+
|
| 313 |
+
wer_str = f"{wer:.4f}" if isinstance(wer, (int, float)) else str(wer)
|
| 314 |
+
loss_str = f"{loss:.4f}" if isinstance(loss, (int, float)) else str(loss)
|
| 315 |
+
|
| 316 |
+
success_msg = f"""
|
| 317 |
+
## β
Whisper Training Complete!
|
| 318 |
+
|
| 319 |
+
**Model:** {WHISPER_MODEL_NAME}
|
| 320 |
+
**Output Directory:** {MODEL_OUTPUT_DIR}
|
| 321 |
+
|
| 322 |
+
**Final Metrics:**
|
| 323 |
+
- Word Error Rate (WER): {wer_str}
|
| 324 |
+
- Validation Loss: {loss_str}
|
| 325 |
+
|
| 326 |
+
**Files Saved:**
|
| 327 |
+
- Model weights: `{MODEL_OUTPUT_DIR}`
|
| 328 |
+
- Processor: `{MODEL_OUTPUT_DIR}`
|
| 329 |
+
- Entities: `{entities_output_path}`
|
| 330 |
+
|
| 331 |
+
The model is now ready for inference!
|
| 332 |
+
"""
|
| 333 |
+
|
| 334 |
+
return success_msg, final_metrics
|
| 335 |
+
|
| 336 |
+
except Exception as e:
|
| 337 |
+
import traceback
|
| 338 |
+
error_msg = f"β Error during Whisper training: {str(e)}\n\n{traceback.format_exc()}"
|
| 339 |
+
print(error_msg)
|
| 340 |
+
if progress:
|
| 341 |
+
progress(1.0, desc="Error!")
|
| 342 |
+
return error_msg, None
|
ui/interface.py
CHANGED
|
@@ -7,7 +7,8 @@ from datetime import datetime
|
|
| 7 |
# Import modules
|
| 8 |
from utils.status import get_status_display, get_data_loading_status
|
| 9 |
from utils.entities import extract_entities_progress
|
| 10 |
-
from training.
|
|
|
|
| 11 |
from models.inference import transcribe_audio, run_inference_owsm
|
| 12 |
from models.loader import get_available_models
|
| 13 |
from data.loader import load_data_from_hf_dataset
|
|
@@ -168,30 +169,69 @@ def create_interface():
|
|
| 168 |
outputs=[extract_output, extract_json]
|
| 169 |
)
|
| 170 |
|
| 171 |
-
# Tab 4: Training
|
| 172 |
with gr.Tab("ποΈ Training"):
|
| 173 |
-
gr.Markdown("###
|
| 174 |
gr.Markdown("""
|
| 175 |
-
|
| 176 |
-
**
|
|
|
|
| 177 |
""")
|
| 178 |
|
| 179 |
-
with gr.
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
# Tab 5: Inference
|
| 197 |
with gr.Tab("π Inference"):
|
|
@@ -261,15 +301,18 @@ def create_interface():
|
|
| 261 |
|
| 262 |
### Workflow
|
| 263 |
1. **Extract Entities**: Run entity extraction on training data
|
| 264 |
-
2. **Train Model**:
|
|
|
|
|
|
|
| 265 |
3. **Run Inference**: Generate test set transcriptions
|
| 266 |
4. **Download Results**: Get submission CSV file
|
| 267 |
|
| 268 |
### Technical Details
|
| 269 |
-
- Framework
|
| 270 |
-
-
|
| 271 |
-
-
|
| 272 |
-
-
|
|
|
|
| 273 |
|
| 274 |
### Documentation
|
| 275 |
See `ESPNET_OWSM_SETUP.md` and `IMPLEMENTATION_SUMMARY.md` for details.
|
|
|
|
| 7 |
# Import modules
|
| 8 |
from utils.status import get_status_display, get_data_loading_status
|
| 9 |
from utils.entities import extract_entities_progress
|
| 10 |
+
from training.espnet_trainer import run_espnet_training_progress
|
| 11 |
+
from training.whisper_trainer import run_whisper_training_progress
|
| 12 |
from models.inference import transcribe_audio, run_inference_owsm
|
| 13 |
from models.loader import get_available_models
|
| 14 |
from data.loader import load_data_from_hf_dataset
|
|
|
|
| 169 |
outputs=[extract_output, extract_json]
|
| 170 |
)
|
| 171 |
|
| 172 |
+
# Tab 4: Training (with sub-tabs for ESPnet and Whisper)
|
| 173 |
with gr.Tab("ποΈ Training"):
|
| 174 |
+
gr.Markdown("### Model Training")
|
| 175 |
gr.Markdown("""
|
| 176 |
+
Choose your training framework:
|
| 177 |
+
- **ESPnet Training**: For ESPnet OWSM models (requires ESPnet recipes)
|
| 178 |
+
- **Whisper Training**: For Whisper models (full HuggingFace integration)
|
| 179 |
""")
|
| 180 |
|
| 181 |
+
with gr.Tabs() as training_tabs:
|
| 182 |
+
# ESPnet Training Tab
|
| 183 |
+
with gr.Tab("π§ ESPnet Training"):
|
| 184 |
+
gr.Markdown("### ESPnet OWSM Model Training")
|
| 185 |
+
gr.Markdown("""
|
| 186 |
+
**ESPnet Training** - Uses ESPnet's native framework.
|
| 187 |
+
|
| 188 |
+
This loads ESPnet models and prepares them for training with ESPnet recipes.
|
| 189 |
+
Full fine-tuning requires ESPnet training recipes.
|
| 190 |
+
""")
|
| 191 |
+
|
| 192 |
+
with gr.Row():
|
| 193 |
+
with gr.Column():
|
| 194 |
+
espnet_train_epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs (for ESPnet recipes)")
|
| 195 |
+
espnet_train_batch_size = gr.Slider(1, 32, value=4, step=1, label="Batch Size (for ESPnet recipes)")
|
| 196 |
+
espnet_train_lr = gr.Slider(1e-6, 1e-3, value=3e-5, step=1e-6, label="Learning Rate (for ESPnet recipes)")
|
| 197 |
+
espnet_train_btn = gr.Button("Load ESPnet Model", variant="primary")
|
| 198 |
+
|
| 199 |
+
with gr.Column():
|
| 200 |
+
espnet_train_output = gr.Markdown()
|
| 201 |
+
espnet_train_metrics = gr.JSON(label="Model Info")
|
| 202 |
+
|
| 203 |
+
espnet_train_btn.click(
|
| 204 |
+
fn=run_espnet_training_progress,
|
| 205 |
+
inputs=[espnet_train_epochs, espnet_train_batch_size, espnet_train_lr],
|
| 206 |
+
outputs=[espnet_train_output, espnet_train_metrics]
|
| 207 |
+
)
|
| 208 |
|
| 209 |
+
# Whisper Training Tab
|
| 210 |
+
with gr.Tab("π€ Whisper Training"):
|
| 211 |
+
gr.Markdown("### Whisper Model Training")
|
| 212 |
+
gr.Markdown("""
|
| 213 |
+
**Whisper Training** - Full HuggingFace transformers integration.
|
| 214 |
+
|
| 215 |
+
Fine-tune Whisper models with entity-weighted loss using HuggingFace's training framework.
|
| 216 |
+
Includes full support for HuggingFace features like early stopping, WER metrics, etc.
|
| 217 |
+
""")
|
| 218 |
+
|
| 219 |
+
with gr.Row():
|
| 220 |
+
with gr.Column():
|
| 221 |
+
whisper_train_epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs")
|
| 222 |
+
whisper_train_batch_size = gr.Slider(1, 32, value=4, step=1, label="Batch Size")
|
| 223 |
+
whisper_train_lr = gr.Slider(1e-6, 1e-3, value=3e-5, step=1e-6, label="Learning Rate")
|
| 224 |
+
whisper_train_btn = gr.Button("Start Whisper Training", variant="primary")
|
| 225 |
+
|
| 226 |
+
with gr.Column():
|
| 227 |
+
whisper_train_output = gr.Markdown()
|
| 228 |
+
whisper_train_metrics = gr.JSON(label="Training Metrics")
|
| 229 |
+
|
| 230 |
+
whisper_train_btn.click(
|
| 231 |
+
fn=run_whisper_training_progress,
|
| 232 |
+
inputs=[whisper_train_epochs, whisper_train_batch_size, whisper_train_lr],
|
| 233 |
+
outputs=[whisper_train_output, whisper_train_metrics]
|
| 234 |
+
)
|
| 235 |
|
| 236 |
# Tab 5: Inference
|
| 237 |
with gr.Tab("π Inference"):
|
|
|
|
| 301 |
|
| 302 |
### Workflow
|
| 303 |
1. **Extract Entities**: Run entity extraction on training data
|
| 304 |
+
2. **Train Model**:
|
| 305 |
+
- **ESPnet Training**: Load ESPnet models (requires ESPnet recipes for fine-tuning)
|
| 306 |
+
- **Whisper Training**: Full HuggingFace fine-tuning with entity-weighted loss
|
| 307 |
3. **Run Inference**: Generate test set transcriptions
|
| 308 |
4. **Download Results**: Get submission CSV file
|
| 309 |
|
| 310 |
### Technical Details
|
| 311 |
+
- **ESPnet Framework**: ESPnet + PyTorch for ESPnet OWSM models
|
| 312 |
+
- **Whisper Framework**: HuggingFace transformers for Whisper models
|
| 313 |
+
- **Model**: OWSM v3.1 E-Branchformer (ESPnet) or Whisper (HuggingFace)
|
| 314 |
+
- **Entity Extraction**: Frequency + capitalization analysis
|
| 315 |
+
- **Training**: Entity-weighted cross-entropy loss
|
| 316 |
|
| 317 |
### Documentation
|
| 318 |
See `ESPNET_OWSM_SETUP.md` and `IMPLEMENTATION_SUMMARY.md` for details.
|