shireenchand commited on
Commit
f016799
·
1 Parent(s): 17e3cbf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import keras
3
+ import numpy as np
4
+ import cv2
5
+ import random
6
+
7
+ classes = ['paper', 'rock', 'scissors']
8
+
9
+ model = tf.keras.models.load_model('rps.h5')
10
+
11
+ def classify_image(inp):
12
+ img = cv2.resize(inp,(224,224),interpolation=cv2.INTER_AREA)
13
+ img = np.reshape(img,(1,224,224,3))
14
+ pred = model1.predict(img).flatten()
15
+ confidences = {classes[i]: float(pred[i]) for i in range(3)}
16
+ global det
17
+ det = classes[pred.argmax(axis=-1)]
18
+ print(det)
19
+ return confidences
20
+
21
+ def random_char(n):
22
+ print("HELLO")
23
+ n = random.randint(0,2)
24
+ global sel
25
+ sel = classes[n]
26
+ print(sel)
27
+ return classes[n].upper()
28
+
29
+ def result(t):
30
+ print("HIOAL")
31
+ print(sel, det)
32
+ if (sel == 'rock' and det == 'paper') or (sel == 'paper' and det == 'scissors') or (sel == "scissors" and det == "rock"):
33
+ return "YOU WON"
34
+ elif (sel == 'paper' and det == 'rock') or (sel == 'scissors' and det == 'paper') or (sel == "rock" and det == "scissors"):
35
+ return "YOU LOST"
36
+ else:
37
+ return "IT'S A TIE"
38
+
39
+ import gradio as gr
40
+
41
+ webcam = gr.inputs.Image(shape=(224, 224), source="webcam")
42
+ classify = gr.Interface(fn=classify_image,
43
+ inputs=webcam,
44
+ outputs=gr.Label(num_top_classes=3))
45
+
46
+ computer = gr.Interface(fn=random_char,
47
+ inputs=None,
48
+ outputs=gr.TextArea(max_lines=1,label='The computer selected:'))
49
+
50
+ final = gr.Interface(fn=result,
51
+ inputs=None,
52
+ outputs=gr.TextArea(max_lines=1,label='Result'))
53
+
54
+ final = gr.Parallel(classify, computer, final).launch(debug=True)