Load PEFT model
Browse files
app.py
CHANGED
|
@@ -1,7 +1,24 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
def greet(name):
|
| 4 |
return "Hello " + name + "!!"
|
| 5 |
|
|
|
|
| 6 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from peft import PeftModel, PeftConfig
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
peft_model_id = "hackathon-somos-nlp-2023/bertin-gpt-j-6b-ner-es"
|
| 7 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
config.base_model_name_or_path,
|
| 10 |
+
return_dict=True,
|
| 11 |
+
load_in_8bit=True,
|
| 12 |
+
device_map="auto",
|
| 13 |
+
)
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
| 15 |
+
# Load the Lora model
|
| 16 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
| 17 |
+
|
| 18 |
|
| 19 |
def greet(name):
|
| 20 |
return "Hello " + name + "!!"
|
| 21 |
|
| 22 |
+
|
| 23 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 24 |
+
iface.launch()
|