Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,14 +5,19 @@ import inspect
|
|
| 5 |
import time
|
| 6 |
import pandas as pd
|
| 7 |
from smolagents import DuckDuckGoSearchTool
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
# --- Constants ---
|
| 10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 11 |
|
| 12 |
-
# ---
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
|
|
|
|
| 16 |
class BasicAgent:
|
| 17 |
def __init__(self, debug: bool = False):
|
| 18 |
self.search = DuckDuckGoSearchTool()
|
|
@@ -32,7 +37,7 @@ class BasicAgent:
|
|
| 32 |
time.sleep(1)
|
| 33 |
results = self.search(question)
|
| 34 |
|
| 35 |
-
# Use
|
| 36 |
if not results:
|
| 37 |
return "No results found for that query."
|
| 38 |
|
|
@@ -62,89 +67,180 @@ class BasicAgent:
|
|
| 62 |
|
| 63 |
return answer
|
| 64 |
|
| 65 |
-
def
|
| 66 |
"""
|
| 67 |
-
|
| 68 |
-
and displays the results.
|
| 69 |
"""
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
if profile:
|
| 74 |
-
username= f"{profile.username}"
|
| 75 |
-
print(f"User logged in: {username}")
|
| 76 |
-
else:
|
| 77 |
-
print("User not logged in.")
|
| 78 |
-
return "Please Login to Hugging Face with the button.", None
|
| 79 |
-
|
| 80 |
api_url = DEFAULT_API_URL
|
| 81 |
questions_url = f"{api_url}/questions"
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 85 |
-
try:
|
| 86 |
-
agent = BasicAgent()
|
| 87 |
-
except Exception as e:
|
| 88 |
-
print(f"Error instantiating agent: {e}")
|
| 89 |
-
return f"Error initializing agent: {e}", None
|
| 90 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 91 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 92 |
-
print(agent_code)
|
| 93 |
-
|
| 94 |
-
# 2. Fetch Questions
|
| 95 |
print(f"Fetching questions from: {questions_url}")
|
| 96 |
try:
|
| 97 |
response = requests.get(questions_url, timeout=15)
|
| 98 |
response.raise_for_status()
|
| 99 |
questions_data = response.json()
|
|
|
|
| 100 |
if not questions_data:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
except requests.exceptions.RequestException as e:
|
| 105 |
-
print(f"Error fetching questions: {e}")
|
| 106 |
return f"Error fetching questions: {e}", None
|
| 107 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 108 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 109 |
-
print(f"Response text: {response.text[:500]}")
|
| 110 |
-
return f"Error decoding server response for questions: {e}", None
|
| 111 |
except Exception as e:
|
| 112 |
-
|
| 113 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 114 |
-
|
| 115 |
-
# 3. Run your Agent
|
| 116 |
-
results_log = []
|
| 117 |
-
answers_payload = []
|
| 118 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 119 |
-
for item in questions_data:
|
| 120 |
-
task_id = item.get("task_id")
|
| 121 |
-
question_text = item.get("question")
|
| 122 |
-
if not task_id or question_text is None:
|
| 123 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 124 |
-
continue
|
| 125 |
-
try:
|
| 126 |
-
submitted_answer = agent(question_text)
|
| 127 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 128 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 129 |
-
except Exception as e:
|
| 130 |
-
print(f"Error running agent on task {task_id}: {e}")
|
| 131 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
|
|
|
| 144 |
try:
|
| 145 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 146 |
response.raise_for_status()
|
| 147 |
result_data = response.json()
|
|
|
|
| 148 |
final_status = (
|
| 149 |
f"Submission Successful!\n"
|
| 150 |
f"User: {result_data.get('username')}\n"
|
|
@@ -152,73 +248,132 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 152 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 153 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 154 |
)
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
results_df = pd.DataFrame(results_log)
|
| 157 |
return final_status, results_df
|
|
|
|
| 158 |
except requests.exceptions.HTTPError as e:
|
| 159 |
error_detail = f"Server responded with status {e.response.status_code}."
|
| 160 |
try:
|
| 161 |
error_json = e.response.json()
|
| 162 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 163 |
-
except
|
| 164 |
error_detail += f" Response: {e.response.text[:500]}"
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
results_df = pd.DataFrame(results_log)
|
| 168 |
-
return status_message, results_df
|
| 169 |
except requests.exceptions.Timeout:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
results_df = pd.DataFrame(results_log)
|
| 173 |
-
return status_message, results_df
|
| 174 |
-
except requests.exceptions.RequestException as e:
|
| 175 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 176 |
-
print(status_message)
|
| 177 |
-
results_df = pd.DataFrame(results_log)
|
| 178 |
-
return status_message, results_df
|
| 179 |
except Exception as e:
|
| 180 |
-
|
| 181 |
-
print(status_message)
|
| 182 |
-
results_df = pd.DataFrame(results_log)
|
| 183 |
-
return status_message, results_df
|
| 184 |
-
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
gr.Markdown(
|
| 190 |
"""
|
| 191 |
-
**Instructions:**
|
| 192 |
-
|
| 193 |
-
1.
|
| 194 |
-
2.
|
| 195 |
-
3.
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
---
|
| 198 |
-
**Disclaimers:**
|
| 199 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 200 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 201 |
"""
|
| 202 |
)
|
| 203 |
|
| 204 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
| 215 |
)
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
| 218 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 219 |
-
|
| 220 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 221 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 222 |
|
| 223 |
if space_host_startup:
|
| 224 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
@@ -226,14 +381,14 @@ if __name__ == "__main__":
|
|
| 226 |
else:
|
| 227 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 228 |
|
| 229 |
-
if space_id_startup:
|
| 230 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 231 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 232 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 233 |
else:
|
| 234 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 235 |
|
| 236 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 237 |
|
| 238 |
-
print("Launching Gradio Interface
|
| 239 |
demo.launch(debug=True, share=False)
|
|
|
|
| 5 |
import time
|
| 6 |
import pandas as pd
|
| 7 |
from smolagents import DuckDuckGoSearchTool
|
| 8 |
+
import threading
|
| 9 |
+
from typing import Dict, List, Optional, Tuple
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
# --- Constants ---
|
| 13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 14 |
|
| 15 |
+
# --- Global Cache for Answers ---
|
| 16 |
+
cached_answers = {}
|
| 17 |
+
cached_questions = []
|
| 18 |
+
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
| 19 |
|
| 20 |
+
# --- Basic Agent Definition ---
|
| 21 |
class BasicAgent:
|
| 22 |
def __init__(self, debug: bool = False):
|
| 23 |
self.search = DuckDuckGoSearchTool()
|
|
|
|
| 37 |
time.sleep(1)
|
| 38 |
results = self.search(question)
|
| 39 |
|
| 40 |
+
# Use truthfulness check and early return
|
| 41 |
if not results:
|
| 42 |
return "No results found for that query."
|
| 43 |
|
|
|
|
| 67 |
|
| 68 |
return answer
|
| 69 |
|
| 70 |
+
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
|
| 71 |
"""
|
| 72 |
+
Fetch questions from the API and cache them.
|
|
|
|
| 73 |
"""
|
| 74 |
+
global cached_questions
|
| 75 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
api_url = DEFAULT_API_URL
|
| 77 |
questions_url = f"{api_url}/questions"
|
| 78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
print(f"Fetching questions from: {questions_url}")
|
| 80 |
try:
|
| 81 |
response = requests.get(questions_url, timeout=15)
|
| 82 |
response.raise_for_status()
|
| 83 |
questions_data = response.json()
|
| 84 |
+
|
| 85 |
if not questions_data:
|
| 86 |
+
return "Fetched questions list is empty.", None
|
| 87 |
+
|
| 88 |
+
cached_questions = questions_data
|
| 89 |
+
|
| 90 |
+
# Create DataFrame for display
|
| 91 |
+
display_data = []
|
| 92 |
+
for item in questions_data:
|
| 93 |
+
display_data.append({
|
| 94 |
+
"Task ID": item.get("task_id", "Unknown"),
|
| 95 |
+
"Question": item.get("question", "")
|
| 96 |
+
})
|
| 97 |
+
|
| 98 |
+
df = pd.DataFrame(display_data)
|
| 99 |
+
status_msg = f"Successfully fetched {len(questions_data)} questions. Ready to generate answers."
|
| 100 |
+
|
| 101 |
+
return status_msg, df
|
| 102 |
+
|
| 103 |
except requests.exceptions.RequestException as e:
|
|
|
|
| 104 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
except Exception as e:
|
| 106 |
+
return f"An unexpected error occurred: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
def generate_answers_async(progress_callback=None):
|
| 109 |
+
"""
|
| 110 |
+
Generate answers for all cached questions asynchronously.
|
| 111 |
+
"""
|
| 112 |
+
global cached_answers, processing_status
|
| 113 |
+
|
| 114 |
+
if not cached_questions:
|
| 115 |
+
return "No questions available. Please fetch questions first."
|
| 116 |
+
|
| 117 |
+
processing_status["is_processing"] = True
|
| 118 |
+
processing_status["progress"] = 0
|
| 119 |
+
processing_status["total"] = len(cached_questions)
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
agent = BasicAgent()
|
| 123 |
+
cached_answers = {}
|
| 124 |
+
|
| 125 |
+
for i, item in enumerate(cached_questions):
|
| 126 |
+
if not processing_status["is_processing"]: # Check if cancelled
|
| 127 |
+
break
|
| 128 |
+
|
| 129 |
+
task_id = item.get("task_id")
|
| 130 |
+
question_text = item.get("question")
|
| 131 |
+
|
| 132 |
+
if not task_id or question_text is None:
|
| 133 |
+
continue
|
| 134 |
+
|
| 135 |
+
try:
|
| 136 |
+
answer = agent(question_text)
|
| 137 |
+
cached_answers[task_id] = {
|
| 138 |
+
"question": question_text,
|
| 139 |
+
"answer": answer
|
| 140 |
+
}
|
| 141 |
+
except Exception as e:
|
| 142 |
+
cached_answers[task_id] = {
|
| 143 |
+
"question": question_text,
|
| 144 |
+
"answer": f"AGENT ERROR: {e}"
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
processing_status["progress"] = i + 1
|
| 148 |
+
if progress_callback:
|
| 149 |
+
progress_callback(i + 1, len(cached_questions))
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"Error in generate_answers_async: {e}")
|
| 153 |
+
finally:
|
| 154 |
+
processing_status["is_processing"] = False
|
| 155 |
|
| 156 |
+
def start_answer_generation():
|
| 157 |
+
"""
|
| 158 |
+
Start the answer generation process in a separate thread.
|
| 159 |
+
"""
|
| 160 |
+
if processing_status["is_processing"]:
|
| 161 |
+
return "Answer generation is already in progress.", None
|
| 162 |
+
|
| 163 |
+
if not cached_questions:
|
| 164 |
+
return "No questions available. Please fetch questions first.", None
|
| 165 |
+
|
| 166 |
+
# Start generation in background thread
|
| 167 |
+
thread = threading.Thread(target=generate_answers_async)
|
| 168 |
+
thread.daemon = True
|
| 169 |
+
thread.start()
|
| 170 |
+
|
| 171 |
+
return "Answer generation started. Check progress below.", None
|
| 172 |
+
|
| 173 |
+
def get_generation_progress():
|
| 174 |
+
"""
|
| 175 |
+
Get the current progress of answer generation.
|
| 176 |
+
"""
|
| 177 |
+
if not processing_status["is_processing"] and processing_status["progress"] == 0:
|
| 178 |
+
return "Not started", None
|
| 179 |
+
|
| 180 |
+
if processing_status["is_processing"]:
|
| 181 |
+
progress = processing_status["progress"]
|
| 182 |
+
total = processing_status["total"]
|
| 183 |
+
status_msg = f"Generating answers... {progress}/{total} completed"
|
| 184 |
+
return status_msg, None
|
| 185 |
+
else:
|
| 186 |
+
# Generation completed
|
| 187 |
+
if cached_answers:
|
| 188 |
+
# Create DataFrame with results
|
| 189 |
+
display_data = []
|
| 190 |
+
for task_id, data in cached_answers.items():
|
| 191 |
+
display_data.append({
|
| 192 |
+
"Task ID": task_id,
|
| 193 |
+
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
|
| 194 |
+
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
|
| 195 |
+
})
|
| 196 |
+
|
| 197 |
+
df = pd.DataFrame(display_data)
|
| 198 |
+
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
|
| 199 |
+
return status_msg, df
|
| 200 |
+
else:
|
| 201 |
+
return "Answer generation completed but no answers were generated.", None
|
| 202 |
|
| 203 |
+
def submit_cached_answers(profile: gr.OAuthProfile | None):
|
| 204 |
+
"""
|
| 205 |
+
Submit the cached answers to the evaluation API.
|
| 206 |
+
"""
|
| 207 |
+
global cached_answers
|
| 208 |
+
|
| 209 |
+
if not profile:
|
| 210 |
+
return "Please log in to Hugging Face first.", None
|
| 211 |
+
|
| 212 |
+
if not cached_answers:
|
| 213 |
+
return "No cached answers available. Please generate answers first.", None
|
| 214 |
+
|
| 215 |
+
username = profile.username
|
| 216 |
+
space_id = os.getenv("SPACE_ID")
|
| 217 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
|
| 218 |
+
|
| 219 |
+
# Prepare submission payload
|
| 220 |
+
answers_payload = []
|
| 221 |
+
for task_id, data in cached_answers.items():
|
| 222 |
+
answers_payload.append({
|
| 223 |
+
"task_id": task_id,
|
| 224 |
+
"submitted_answer": data["answer"]
|
| 225 |
+
})
|
| 226 |
+
|
| 227 |
+
submission_data = {
|
| 228 |
+
"username": username.strip(),
|
| 229 |
+
"agent_code": agent_code,
|
| 230 |
+
"answers": answers_payload
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
+
# Submit to API
|
| 234 |
+
api_url = DEFAULT_API_URL
|
| 235 |
+
submit_url = f"{api_url}/submit"
|
| 236 |
+
|
| 237 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 238 |
+
|
| 239 |
try:
|
| 240 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 241 |
response.raise_for_status()
|
| 242 |
result_data = response.json()
|
| 243 |
+
|
| 244 |
final_status = (
|
| 245 |
f"Submission Successful!\n"
|
| 246 |
f"User: {result_data.get('username')}\n"
|
|
|
|
| 248 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 249 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 250 |
)
|
| 251 |
+
|
| 252 |
+
# Create results DataFrame
|
| 253 |
+
results_log = []
|
| 254 |
+
for task_id, data in cached_answers.items():
|
| 255 |
+
results_log.append({
|
| 256 |
+
"Task ID": task_id,
|
| 257 |
+
"Question": data["question"],
|
| 258 |
+
"Submitted Answer": data["answer"]
|
| 259 |
+
})
|
| 260 |
+
|
| 261 |
results_df = pd.DataFrame(results_log)
|
| 262 |
return final_status, results_df
|
| 263 |
+
|
| 264 |
except requests.exceptions.HTTPError as e:
|
| 265 |
error_detail = f"Server responded with status {e.response.status_code}."
|
| 266 |
try:
|
| 267 |
error_json = e.response.json()
|
| 268 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 269 |
+
except:
|
| 270 |
error_detail += f" Response: {e.response.text[:500]}"
|
| 271 |
+
return f"Submission Failed: {error_detail}", None
|
| 272 |
+
|
|
|
|
|
|
|
| 273 |
except requests.exceptions.Timeout:
|
| 274 |
+
return "Submission Failed: The request timed out.", None
|
| 275 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
except Exception as e:
|
| 277 |
+
return f"Submission Failed: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
+
def clear_cache():
|
| 280 |
+
"""
|
| 281 |
+
Clear all cached data.
|
| 282 |
+
"""
|
| 283 |
+
global cached_answers, cached_questions, processing_status
|
| 284 |
+
cached_answers = {}
|
| 285 |
+
cached_questions = []
|
| 286 |
+
processing_status = {"is_processing": False, "progress": 0, "total": 0}
|
| 287 |
+
return "Cache cleared successfully.", None
|
| 288 |
+
|
| 289 |
+
# --- Enhanced Gradio Interface ---
|
| 290 |
+
with gr.Blocks(title="Enhanced Agent Evaluation Runner") as demo:
|
| 291 |
+
gr.Markdown("# Enhanced Agent Evaluation Runner with Answer Caching")
|
| 292 |
gr.Markdown(
|
| 293 |
"""
|
| 294 |
+
**Enhanced Instructions:**
|
| 295 |
+
|
| 296 |
+
1. **Clone and Modify**: Clone this space and modify the agent logic as needed.
|
| 297 |
+
2. **Login**: Log in to your Hugging Face account.
|
| 298 |
+
3. **Fetch Questions**: Load all questions from the evaluation API.
|
| 299 |
+
4. **Generate Answers**: Create answers for all questions (runs in background).
|
| 300 |
+
5. **Review Results**: Check the generated answers before submission.
|
| 301 |
+
6. **Submit**: Submit your answers when ready.
|
| 302 |
+
|
| 303 |
+
**Benefits of this approach:**
|
| 304 |
+
- ✅ Faster user feedback (separate steps)
|
| 305 |
+
- ✅ Ability to review answers before submission
|
| 306 |
+
- ✅ Progress tracking during answer generation
|
| 307 |
+
- ✅ Cache management for multiple runs
|
| 308 |
+
|
| 309 |
---
|
|
|
|
|
|
|
|
|
|
| 310 |
"""
|
| 311 |
)
|
| 312 |
|
| 313 |
+
with gr.Row():
|
| 314 |
+
gr.LoginButton()
|
| 315 |
+
clear_btn = gr.Button("Clear Cache", variant="secondary")
|
| 316 |
+
|
| 317 |
+
with gr.Tab("Step 1: Fetch Questions"):
|
| 318 |
+
gr.Markdown("### Fetch Questions from API")
|
| 319 |
+
fetch_btn = gr.Button("Fetch Questions", variant="primary")
|
| 320 |
+
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
|
| 321 |
+
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
|
| 322 |
+
|
| 323 |
+
fetch_btn.click(
|
| 324 |
+
fn=fetch_questions,
|
| 325 |
+
outputs=[fetch_status, questions_table]
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
with gr.Tab("Step 2: Generate Answers"):
|
| 329 |
+
gr.Markdown("### Generate Answers (Background Processing)")
|
| 330 |
+
|
| 331 |
+
with gr.Row():
|
| 332 |
+
generate_btn = gr.Button("Start Answer Generation", variant="primary")
|
| 333 |
+
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
|
| 334 |
+
|
| 335 |
+
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
|
| 336 |
+
answers_preview = gr.DataFrame(label="Generated Answers Preview", wrap=True)
|
| 337 |
+
|
| 338 |
+
generate_btn.click(
|
| 339 |
+
fn=start_answer_generation,
|
| 340 |
+
outputs=[generation_status, answers_preview]
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
refresh_btn.click(
|
| 344 |
+
fn=get_generation_progress,
|
| 345 |
+
outputs=[generation_status, answers_preview]
|
| 346 |
+
)
|
| 347 |
|
| 348 |
+
with gr.Tab("Step 3: Submit Results"):
|
| 349 |
+
gr.Markdown("### Submit Generated Answers")
|
| 350 |
+
submit_btn = gr.Button("Submit Cached Answers", variant="primary")
|
| 351 |
+
submission_status = gr.Textbox(label="Submission Status", lines=5, interactive=False)
|
| 352 |
+
final_results = gr.DataFrame(label="Final Submission Results", wrap=True)
|
| 353 |
+
|
| 354 |
+
submit_btn.click(
|
| 355 |
+
fn=submit_cached_answers,
|
| 356 |
+
outputs=[submission_status, final_results]
|
| 357 |
+
)
|
| 358 |
|
| 359 |
+
# Clear cache functionality
|
| 360 |
+
clear_btn.click(
|
| 361 |
+
fn=clear_cache,
|
| 362 |
+
outputs=[fetch_status, questions_table]
|
| 363 |
+
)
|
| 364 |
|
| 365 |
+
# Auto-refresh progress every 5 seconds when generation is active
|
| 366 |
+
demo.load(
|
| 367 |
+
fn=get_generation_progress,
|
| 368 |
+
outputs=[generation_status, answers_preview],
|
| 369 |
+
every=5
|
| 370 |
)
|
| 371 |
|
| 372 |
if __name__ == "__main__":
|
| 373 |
+
print("\n" + "-"*30 + " Enhanced App Starting " + "-"*30)
|
| 374 |
+
|
| 375 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 376 |
+
space_id_startup = os.getenv("SPACE_ID")
|
| 377 |
|
| 378 |
if space_host_startup:
|
| 379 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
|
| 381 |
else:
|
| 382 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 383 |
|
| 384 |
+
if space_id_startup:
|
| 385 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 386 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 387 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 388 |
else:
|
| 389 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 390 |
|
| 391 |
+
print("-"*(60 + len(" Enhanced App Starting ")) + "\n")
|
| 392 |
|
| 393 |
+
print("Launching Enhanced Gradio Interface...")
|
| 394 |
demo.launch(debug=True, share=False)
|