Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +31 -1
- app.py +93 -9
- requirements.txt +5 -1
README.md
CHANGED
|
@@ -9,4 +9,34 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
| 13 |
+
|
| 14 |
+
## Local Transformers mode with alternate tokenizer
|
| 15 |
+
|
| 16 |
+
If the target model repository does not include a tokenizer, you can instruct the app to run locally with `transformers` and use a tokenizer from another repository.
|
| 17 |
+
|
| 18 |
+
Environment variables:
|
| 19 |
+
|
| 20 |
+
- `MODEL_ID` (optional): model repo to load. Defaults to `tianzhechu/BookQA-7B-Instruct`.
|
| 21 |
+
- `TOKENIZER_ID` (optional): tokenizer repo to use locally (e.g., a base model's tokenizer). When set, the app switches to a local `transformers` backend and streams tokens from your machine.
|
| 22 |
+
- `USE_LOCAL_TRANSFORMERS` (optional): set to `1` to force local mode even without `TOKENIZER_ID`.
|
| 23 |
+
|
| 24 |
+
Install extra dependencies:
|
| 25 |
+
|
| 26 |
+
```bash
|
| 27 |
+
pip install -r requirements.txt
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
Run with an alternate tokenizer (example):
|
| 31 |
+
|
| 32 |
+
```bash
|
| 33 |
+
export MODEL_ID=tianzhechu/BookQA-7B-Instruct
|
| 34 |
+
export TOKENIZER_ID=TheBaseModel/TokenizerRepo
|
| 35 |
+
python app.py
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
Notes:
|
| 39 |
+
|
| 40 |
+
- Local inference will download and load the model weights via `transformers` and may require significant memory.
|
| 41 |
+
- If the tokenizer exposes a chat template, it is applied automatically. Otherwise a simple fallback template is used.
|
| 42 |
+
- You'll need a compatible version of `torch` installed for your platform. If the default pip install fails, follow the official install instructions for your OS/GPU.
|
app.py
CHANGED
|
@@ -1,10 +1,38 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
"""
|
| 5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
"""
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def respond(
|
|
@@ -27,17 +55,73 @@ def respond(
|
|
| 27 |
|
| 28 |
response = ""
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
"""
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import threading
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
|
| 6 |
"""
|
| 7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 8 |
"""
|
| 9 |
+
|
| 10 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 11 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 12 |
+
MODEL_ID = os.getenv("MODEL_ID", "tianzhechu/BookQA-7B-Instruct")
|
| 13 |
+
TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen2.5-0.5B-Instruct") # Optional: tokenizer repo to use locally
|
| 14 |
+
USE_LOCAL_TRANSFORMERS = bool(TOKENIZER_ID) or os.getenv("USE_LOCAL_TRANSFORMERS") == "1"
|
| 15 |
+
|
| 16 |
+
# Remote inference (default)
|
| 17 |
+
client = None if USE_LOCAL_TRANSFORMERS else InferenceClient(MODEL_ID)
|
| 18 |
+
|
| 19 |
+
# Lazy-loaded local model/tokenizer when TOKENIZER_ID is provided
|
| 20 |
+
local_model = None
|
| 21 |
+
local_tokenizer = None
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _ensure_local_model_loaded():
|
| 25 |
+
global local_model, local_tokenizer
|
| 26 |
+
if local_model is not None and local_tokenizer is not None:
|
| 27 |
+
return
|
| 28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 29 |
+
|
| 30 |
+
if not TOKENIZER_ID:
|
| 31 |
+
raise RuntimeError(
|
| 32 |
+
"Local transformers backend requires TOKENIZER_ID to be set to a tokenizer repo."
|
| 33 |
+
)
|
| 34 |
+
local_tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True)
|
| 35 |
+
local_model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
| 36 |
|
| 37 |
|
| 38 |
def respond(
|
|
|
|
| 55 |
|
| 56 |
response = ""
|
| 57 |
|
| 58 |
+
if not USE_LOCAL_TRANSFORMERS:
|
| 59 |
+
for message in client.chat_completion(
|
| 60 |
+
messages,
|
| 61 |
+
max_tokens=max_tokens,
|
| 62 |
+
stream=True,
|
| 63 |
+
temperature=temperature,
|
| 64 |
+
top_p=top_p,
|
| 65 |
+
):
|
| 66 |
+
token = message.choices[0].delta.content
|
| 67 |
+
if token:
|
| 68 |
+
response += token
|
| 69 |
+
yield response
|
| 70 |
+
return
|
| 71 |
+
|
| 72 |
+
# Local generation using transformers with an alternate tokenizer
|
| 73 |
+
_ensure_local_model_loaded()
|
| 74 |
+
|
| 75 |
+
try:
|
| 76 |
+
from transformers import TextIteratorStreamer
|
| 77 |
+
except Exception as e:
|
| 78 |
+
raise RuntimeError(
|
| 79 |
+
"transformers TextIteratorStreamer is required for local streaming; ensure transformers is installed."
|
| 80 |
+
) from e
|
| 81 |
+
|
| 82 |
+
# Use chat template if available; otherwise fall back to a simple concatenation
|
| 83 |
+
try:
|
| 84 |
+
prompt_text = local_tokenizer.apply_chat_template(
|
| 85 |
+
messages,
|
| 86 |
+
tokenize=False,
|
| 87 |
+
add_generation_prompt=True,
|
| 88 |
+
)
|
| 89 |
+
except Exception:
|
| 90 |
+
convo_parts = []
|
| 91 |
+
for m in messages:
|
| 92 |
+
role = m.get("role", "user")
|
| 93 |
+
content = m.get("content", "")
|
| 94 |
+
if role == "system":
|
| 95 |
+
convo_parts.append(f"<system>\n{content}\n</system>")
|
| 96 |
+
elif role == "assistant":
|
| 97 |
+
convo_parts.append(f"<assistant>\n{content}\n</assistant>")
|
| 98 |
+
else:
|
| 99 |
+
convo_parts.append(f"<user>\n{content}\n</user>")
|
| 100 |
+
prompt_text = "\n".join(convo_parts) + "\n<assistant>\n"
|
| 101 |
+
|
| 102 |
+
inputs = local_tokenizer(prompt_text, return_tensors="pt")
|
| 103 |
+
|
| 104 |
+
streamer = TextIteratorStreamer(
|
| 105 |
+
local_tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
generate_kwargs = dict(
|
| 109 |
+
inputs=inputs.input_ids,
|
| 110 |
+
attention_mask=inputs.get("attention_mask"),
|
| 111 |
+
max_new_tokens=max_tokens,
|
| 112 |
+
do_sample=temperature > 0,
|
| 113 |
temperature=temperature,
|
| 114 |
top_p=top_p,
|
| 115 |
+
streamer=streamer,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
thread = threading.Thread(target=local_model.generate, kwargs=generate_kwargs)
|
| 119 |
+
thread.start()
|
| 120 |
|
| 121 |
+
for new_text in streamer:
|
| 122 |
+
if new_text:
|
| 123 |
+
response += new_text
|
| 124 |
+
yield response
|
| 125 |
|
| 126 |
|
| 127 |
"""
|
requirements.txt
CHANGED
|
@@ -1 +1,5 @@
|
|
| 1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.25.2
|
| 2 |
+
gradio==5.0.1
|
| 3 |
+
transformers>=4.38.0
|
| 4 |
+
torch>=2.1.0
|
| 5 |
+
transformers>=4.38.0
|