Spaces:
Running
Running
File size: 15,997 Bytes
2740367 c6bcc0c c38e4ce c6bcc0c ab99a3d c6bcc0c ab99a3d c6bcc0c ab99a3d c38e4ce ab99a3d c6bcc0c ab99a3d c6bcc0c c38e4ce c6bcc0c ab99a3d c6bcc0c ab99a3d c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce ab99a3d c38e4ce ab99a3d c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c c38e4ce c6bcc0c ab99a3d c6bcc0c c38e4ce c6bcc0c 6de8c39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import streamlit as st
import json
import numpy as np
from sentence_transformers import SentenceTransformer, util
import os
import boto3
import psycopg2
from psycopg2.extensions import connection
import torch
import re
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
from dotenv import load_dotenv
from latex_clean import clean_latex_for_display
# Config
load_dotenv()
def get_rds_connection() -> connection:
region = os.getenv("AWS_REGION")
secret_arn = os.getenv("RDS_SECRET_ARN")
host = os.getenv("RDS_HOST")
dbname = os.getenv("RDS_DB_NAME")
sm = boto3.client("secretsmanager", region_name=region)
secret_value = sm.get_secret_value(SecretId=secret_arn)
secret_dict = json.loads(secret_value["SecretString"])
conn = psycopg2.connect(
host=host or secret_dict.get("host"),
port=int(secret_dict.get("port", 5432)),
dbname=dbname or secret_dict.get("dbname"),
user=secret_dict["username"],
password=secret_dict["password"],
sslmode="require",
)
return conn
AVAILABLE_TAGS = {
"arXiv": [
"math.AC", "math.AG", "math.AP", "math.AT", "math.CA", "math.CO",
"math.CT", "math.CV", "math.DG", "math.DS", "math.FA", "math.GM",
"math.GN", "math.GR", "math.GT", "math.HO", "math.IT", "math.KT",
"math.LO", "math.MG", "math.MP", "math.NA", "math.NT", "math.OA",
"math.OC", "math.PR", "math.QA", "math.RA", "math.RT", "math.SG",
"math.SP", "math.ST", "Statistics Theory"
],
"Stacks Project": [
"Sets", "Schemes", "Algebraic Stacks", "Étale Cohomology"
]
}
ALLOWED_TYPES = [
"theorem", "lemma", "proposition", "corollary", "definition", "remark", "assumption"
]
ARXIV_ID_RE = re.compile(
r'arxiv\.org/(?:abs|pdf)/((?:\d{4}\.\d{4,5}|[a-z\-]+/\d{7}))(?:v\d+)?',
re.IGNORECASE
)
# Load the Embedding Model
@st.cache_resource
def load_model():
"""
Loads the specialized math embedding model from Hugging Face.
"""
try:
model = SentenceTransformer('math-similarity/Bert-MLM_arXiv-MP-class_zbMath')
return model
except Exception as e:
st.error(f"Error loading the embedding model: {e}")
return None
# Load Data from RDS
@st.cache_data
def load_papers_from_rds():
"""
Loads theorem data from the RDS database and prepares it for embedding.
Returns a list of theorem dictionaries with all necessary fields.
"""
try:
conn = get_rds_connection()
cur = conn.cursor()
# Fetch all papers with their theorems and embeddings
cur.execute("""
SELECT
tm.paper_id,
tm.title,
tm.authors,
tm.link,
tm.last_updated,
tm.summary,
tm.journal_ref,
tm.primary_category,
tm.categories,
tm.global_notations,
tm.global_definitions,
tm.global_assumptions,
te.theorem_name,
te.theorem_slogan,
te.theorem_body,
te.embedding
FROM theorem_metadata tm
JOIN theorem_embedding te ON tm.paper_id = te.paper_id
ORDER BY tm.paper_id, te.theorem_name;
""")
rows = cur.fetchall()
cur.close()
conn.close()
all_theorems_data = []
for row in rows:
(paper_id, title, authors, link, last_updated, summary,
journal_ref, primary_category, categories,
global_notations, global_definitions, global_assumptions,
theorem_name, theorem_slogan, theorem_body, embedding) = row
# Build global context
global_context_parts = []
if global_notations:
global_context_parts.append(f"**Global Notations:**\n{global_notations}")
if global_definitions:
global_context_parts.append(f"**Global Definitions:**\n{global_definitions}")
if global_assumptions:
global_context_parts.append(f"**Global Assumptions:**\n{global_assumptions}")
global_context = "\n\n".join(global_context_parts)
# Convert embedding to a numpy float array
if isinstance(embedding, str):
embedding = json.loads(embedding)
if isinstance(embedding, list):
embedding = np.array(embedding, dtype=np.float32)
elif isinstance(embedding, np.ndarray):
embedding = embedding.astype(np.float32)
# Determine source from url
link_str = link or ""
if link_str.startswith("http://arxiv.org") or link_str.startswith("https://arxiv.org"):
source = "arXiv"
else:
source = "Stacks Project"
# Determine type from name
def infer_type(name: str) -> str:
if not name:
return "theorem"
lower = name.lower()
for t in ["theorem", "lemma", "proposition", "corollary", "definition", "remark", "assumption"]:
if t in lower:
return t
return "theorem"
inferred_type = infer_type(theorem_name or "")
all_theorems_data.append({
"paper_id": paper_id,
"authors": authors,
"paper_title": title,
"paper_url": link,
"year": last_updated.year,
"primary_category": primary_category,
"source": source,
"type": inferred_type,
"journal_published": bool(journal_ref),
"citations": None,
"theorem_name": theorem_name,
"theorem_slogan": theorem_slogan,
"theorem_body": theorem_body,
"global_context": global_context,
"stored_embedding": embedding,
})
return all_theorems_data
except Exception as e:
st.error(f"Error loading data from RDS: {e}")
return []
@st.cache_data(ttl=60*60*24) # cache for 24 hours
def fetch_citations(paper_url: str, title: str) -> int | None:
"""
Returns citation count if found, else None.
Tries the following sources in order:
1) OpenAlex by arXiv id
2) Semantic Scholar by arXiv id
3) Semantic Scholar by title
"""
arx_id = None
if paper_url:
m = ARXIV_ID_RE.search(paper_url)
if m:
arx_id = m.group(1)
# OpenAlex by arXiv id
if arx_id:
try:
r = requests.get(f"https://api.openalex.org/works/arXiv:{arx_id}", timeout=10)
if r.ok:
data = r.json()
c = data.get("cited_by_count")
if isinstance(c, int):
return c
except Exception:
pass
# Semantic Scholar by arXiv id
if arx_id:
try:
r = requests.get(
f"https://api.semanticscholar.org/graph/v1/paper/arXiv:{arx_id}",
params={"fields": "citationCount"},
timeout=10
)
if r.ok:
j = r.json()
c = j.get("citationCount")
if isinstance(c, int):
return c
except Exception:
pass
# Fallback: Semantic Scholar by title
if title:
try:
r = requests.get(
"https://api.semanticscholar.org/graph/v1/paper/search",
params={"query": title, "limit": 1, "fields": "title,citationCount"},
timeout=10
)
if r.ok:
j = r.json()
if j.get("data"):
c = j["data"][0].get("citationCount")
if isinstance(c, int):
return c
except Exception:
pass
return None
def add_citations(candidates: list[dict], max_workers: int = 6) -> None:
# Select targets with missing citations
targets = [
it for it in candidates
if it.get("source") == "arXiv" and (it.get("citations") in (None, 0))
]
if not targets:
return
with ThreadPoolExecutor(max_workers=max_workers) as exe:
fut2item = {
exe.submit(fetch_citations, it.get("paper_url"), it.get("paper_title")): it
for it in targets
}
for fut in as_completed(fut2item):
it = fut2item[fut]
try:
c = fut.result()
if c is not None:
it["citations"] = c
except Exception:
pass
# --- Search and Display ---
def search_and_display_with_filters(query, model, theorems_data, embeddings_db, filters):
if not query:
st.info("Please enter a search query.")
return
if not filters['sources']:
st.warning("Please select at least one source.")
return
query_embedding = model.encode(query, convert_to_tensor=True)
cosine_scores = util.cos_sim(query_embedding, embeddings_db)[0]
# Get a larger pool to filter from
top_k_pool = min(200, len(theorems_data))
top_indices = torch.topk(cosine_scores, k=top_k_pool, sorted=True).indices
pool_items = [theorems_data[int(i.item())] for i in top_indices]
add_citations(pool_items)
results = []
low, high = filters['citation_range']
# Filter results
for item in pool_items:
type_match = (not filters['types']) or (item.get('type','').lower() in filters['types'])
tag_match = (not filters['tags']) or (item.get('primary_category') in filters['tags'])
author_match = (not filters['authors']) or any(a in (item.get('authors') or []) for a in filters['authors'])
source_match = item.get('source') in filters['sources']
# Citations & year & journal only meaningful for arXiv
cit = item.get('citations')
if cit is None:
if not filters['include_unknown_citations']:
continue
citation_match = True
else:
citation_match = (low <= int(cit) <= high)
year_match = True
if filters['year_range'] and item.get('source') == 'arXiv':
y = item.get('year') or 0
yr0, yr1 = filters['year_range']
year_match = (yr0 <= y <= yr1)
journal_match = True
if item.get('source') == 'arXiv':
status = filters['journal_status']
jp = bool(item.get('journal_published'))
if status == "Journal Article":
journal_match = jp
elif status == "Preprint Only":
journal_match = not jp
if all([type_match, tag_match, author_match, source_match, citation_match, year_match, journal_match]):
results.append({"info": item, "similarity": float(cosine_scores[theorems_data.index(item)].item())})
if len(results) >= filters['top_k']:
break
st.subheader(f"Found {len(results)} Matching Results")
if not results:
st.warning("No results found for the current filters.")
return
for i, r in enumerate(results):
info = r["info"]
expander_title = f"**Result {i+1} | Similarity: {r['similarity']:.4f} | Type: {info.get('type','').title()}**"
with st.expander(expander_title):
st.markdown(f"**Paper:** *{info.get('paper_title','Unknown')}*")
st.markdown(f"**Authors:** {', '.join(info.get('authors') or []) or 'N/A'}")
st.markdown(f"**Source:** {info.get('source')} ([Link]({info.get('paper_url')}))")
cit = info.get("citations")
cit_str = "Unknown" if cit is None else str(cit)
st.markdown(
f"**Math Tag:** `{info.get('primary_category')}` | "
f"**Citations:** {cit_str} | "
f"**Year:** {info.get('year', 'N/A')}"
)
st.markdown("---")
if info.get("theorem_slogan"):
st.markdown(f"**Slogan:** {info['theorem_slogan']}\n")
if info.get("global_context"):
cleaned_ctx = clean_latex_for_display(info["global_context"])
st.markdown("> " + cleaned_ctx.replace("\n", "\n> ") )
cleaned_content = clean_latex_for_display(info['theorem_body'])
st.markdown("**Theorem Body:**")
st.markdown(cleaned_content)
# --- Main App Interface ---
st.set_page_config(page_title="Theorem Search Demo", layout="wide")
st.title("📚 Semantic Theorem Search")
st.write("This demo uses a specialized mathematical language model to find theorems semantically similar to your query.")
model = load_model()
theorems_data = load_papers_from_rds()
if model and theorems_data:
with st.spinner("Preparing embeddings from database..."):
corpus_embeddings = np.array([item['stored_embedding'] for item in theorems_data])
st.success(f"Successfully loaded {len(theorems_data)} theorems from arXiv and the Stacks Project. Ready to search!")
# --- Sidebar filters ---
with st.sidebar:
st.header("Search Filters")
all_sources = ['arXiv', 'Stacks Project']
selected_sources = st.multiselect(
"Filter by Source(s):",
all_sources,
default=all_sources[:1] if all_sources else [],
help="Select one or more sources to reveal more filters."
)
selected_authors, selected_types, selected_tags = [], [], []
year_range, journal_status = None, "All"
citation_range = (0, 1000)
top_k_results = 5
if selected_sources:
st.write("---")
selected_types = st.multiselect("Filter by Type:", ALLOWED_TYPES)
all_authors = sorted(list(set(a for it in theorems_data for a in (it.get('authors') or []))))
selected_authors = st.multiselect("Filter by Author(s):", all_authors)
# Tags come from union of categories per selected source
from collections import defaultdict
tags_per_source = defaultdict(set)
for it in theorems_data:
tags_per_source[it['source']].add(it.get('primary_category'))
union_tags = sorted({t for s in selected_sources for t in tags_per_source.get(s, set()) if t})
selected_tags = st.multiselect("Filter by Math Tag/Category:", union_tags)
if 'arXiv' in selected_sources:
year_range = st.slider("Filter by Year (for arXiv):", 1991, 2025, (1991, 2025))
journal_status = st.radio("Publication Status (for arXiv):", ["All", "Journal Article", "Preprint Only"], horizontal=True)
citation_range = st.slider("Filter by Citations:", 0, 1000, (0, 1000))
include_unknown_citations = st.checkbox(
"Include entries with unknown citation counts",
value=True,
help="If unchecked, results with unknown citation counts are excluded."
)
top_k_results = st.slider("Number of results to display:", 1, 20, 5)
filters = {
"authors": selected_authors,
"types": [t.lower() for t in selected_types],
"tags": selected_tags,
"sources": selected_sources,
"year_range": year_range,
"journal_status": journal_status,
"citation_range": citation_range,
"include_unknown_citations": include_unknown_citations,
"top_k": top_k_results
}
user_query = st.text_input("Enter your query:", "")
if st.button("Search") or user_query:
search_and_display_with_filters(user_query, model, theorems_data, corpus_embeddings, filters)
else:
st.error("Could not load the model or data from RDS. Please check your RDS database connection and credentials.") |