Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
-
|
| 5 |
-
model_name = "Qwen/Qwen3-0.6B"
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def greet(input):
|
| 16 |
|
|
|
|
| 1 |
+
# 安装依赖
|
| 2 |
+
!pip install transformers accelerate bitsandbytes huggingface_hub
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM,
|
| 6 |
|
| 7 |
+
import torch
|
|
|
|
| 8 |
|
| 9 |
+
# 加载模型(使用 4-bit 量化直接加载,避免 OOM)
|
| 10 |
+
model_name = "ByteDance-Seed/UI-TARS-1.5-7B" # 或 UI-TARS-1.5-7B(如果你有权访问)
|
|
|
|
| 11 |
|
| 12 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 13 |
+
model_name,
|
| 14 |
+
device_map="auto", # ⬅️ 4-bit 量化
|
| 15 |
+
torch_dtype=torch.float16,
|
| 16 |
+
quantization_config={
|
| 17 |
+
"load_in_4bit": True,
|
| 18 |
+
"bnb_4bit_quant_type": "nf4", # ✅ 必须是 nf4(CPU 只支持这个)
|
| 19 |
+
"bnb_4bit_compute_dtype": torch.float16,
|
| 20 |
+
"bnb_4bit_use_double_quant": True, # 可选:减少 0.4% 体积
|
| 21 |
+
},
|
| 22 |
+
low_cpu_mem_usage=True
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 26 |
|
| 27 |
+
# # 保存量化后的模型到本地(或 Hugging Face)
|
| 28 |
+
# model.save_pretrained("./ui-tars-8b-4bit")
|
| 29 |
+
# tokenizer.save_pretrained("./ui-tars-8b-4bit")
|
| 30 |
|
| 31 |
def greet(input):
|
| 32 |
|