update
Browse files
app.py
CHANGED
|
@@ -1,7 +1,50 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
+
|
| 5 |
+
def greet(input):
|
| 6 |
+
|
| 7 |
+
model_name = "Qwen/Qwen3-8B"
|
| 8 |
+
|
| 9 |
+
# load the tokenizer and the model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
tokenizer.save_pretrained("./qwen3")
|
| 14 |
+
model.save_pretrained("./qwen3")
|
| 15 |
+
|
| 16 |
+
# prepare the model input
|
| 17 |
+
prompt = "Give me a short introduction to large language model."
|
| 18 |
+
prompt = input
|
| 19 |
+
messages = [{"role": "user", "content": prompt}]
|
| 20 |
+
text = tokenizer.apply_chat_template(
|
| 21 |
+
messages,
|
| 22 |
+
tokenize=False,
|
| 23 |
+
add_generation_prompt=True,
|
| 24 |
+
enable_thinking=True, # Switches between thinking and non-thinking modes. Default is True.
|
| 25 |
+
)
|
| 26 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 27 |
+
|
| 28 |
+
# conduct text completion
|
| 29 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
| 30 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :].tolist()
|
| 31 |
+
|
| 32 |
+
# parsing thinking content
|
| 33 |
+
try:
|
| 34 |
+
# rindex finding 151668 (</think>)
|
| 35 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
| 36 |
+
except ValueError:
|
| 37 |
+
index = 0
|
| 38 |
+
|
| 39 |
+
thinking_content = tokenizer.decode(
|
| 40 |
+
output_ids[:index], skip_special_tokens=True
|
| 41 |
+
).strip("\n")
|
| 42 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
| 43 |
+
|
| 44 |
+
# print("thinking content:", thinking_content)
|
| 45 |
+
# print("content:", content)
|
| 46 |
+
|
| 47 |
+
return "thinking content:" + thinking_content + "\n" + "content:" + content
|
| 48 |
|
| 49 |
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 50 |
+
demo.launch()
|