Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
|
| 8 |
+
model_id = "yifeihu/TB-OCR-preview-0.1"
|
| 9 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
model_id,
|
| 12 |
+
device_map="cuda",
|
| 13 |
+
trust_remote_code=True,
|
| 14 |
+
torch_dtype="auto",
|
| 15 |
+
attn_implementation='flash_attention_2',
|
| 16 |
+
load_in_4bit=True
|
| 17 |
+
)
|
| 18 |
+
processor = AutoProcessor.from_pretrained(model_id,
|
| 19 |
+
trust_remote_code=True,
|
| 20 |
+
num_crops=16
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
@spaces.GPU
|
| 24 |
+
def phi_ocr(image):
|
| 25 |
+
question = "Convert the text to markdown format."
|
| 26 |
+
prompt_message = [{
|
| 27 |
+
'role': 'user',
|
| 28 |
+
'content': f'<|image_1|>\n{question}',
|
| 29 |
+
}]
|
| 30 |
+
prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True)
|
| 31 |
+
inputs = processor(prompt, [image], return_tensors="pt").to("cuda")
|
| 32 |
+
generation_args = {
|
| 33 |
+
"max_new_tokens": 1024,
|
| 34 |
+
"temperature": 0.1,
|
| 35 |
+
"do_sample": False
|
| 36 |
+
}
|
| 37 |
+
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
| 38 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 39 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 40 |
+
response = response.split("<image_end>")[0]
|
| 41 |
+
return response
|
| 42 |
+
|
| 43 |
+
def process_image(input_image):
|
| 44 |
+
return phi_ocr(input_image)
|
| 45 |
+
|
| 46 |
+
iface = gr.Interface(
|
| 47 |
+
fn=process_image,
|
| 48 |
+
inputs=gr.Image(type="pil"),
|
| 49 |
+
outputs="text",
|
| 50 |
+
title="OCR with Phi-3.5-vision-instruct",
|
| 51 |
+
description="Upload an image to extract and convert text to markdown format."
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
iface.launch()
|