Тыц
Browse files- Dockerfile +19 -0
- main.py +57 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && \
|
| 6 |
+
apt-get install -y --no-install-recommends git g++ make && \
|
| 7 |
+
apt-get clean && \
|
| 8 |
+
rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
COPY requirements.txt .
|
| 11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 12 |
+
|
| 13 |
+
COPY main.py .
|
| 14 |
+
|
| 15 |
+
ENV HF_HOME=/tmp/huggingface-cache
|
| 16 |
+
ENV TOKENIZERS_PARALLELISM=false
|
| 17 |
+
|
| 18 |
+
EXPOSE 7860
|
| 19 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# Проверка версии NumPy
|
| 8 |
+
assert np.__version__.startswith('1.'), f"Несовместимая версия NumPy: {np.__version__}"
|
| 9 |
+
|
| 10 |
+
app = FastAPI()
|
| 11 |
+
|
| 12 |
+
class RequestData(BaseModel):
|
| 13 |
+
prompt: str
|
| 14 |
+
max_tokens: int = 50
|
| 15 |
+
|
| 16 |
+
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
# Загрузка модели с явным указанием device_map
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
+
MODEL_NAME,
|
| 23 |
+
torch_dtype=torch.float32,
|
| 24 |
+
device_map="auto",
|
| 25 |
+
low_cpu_mem_usage=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Создаем pipeline без указания device
|
| 29 |
+
generator = pipeline(
|
| 30 |
+
"text-generation",
|
| 31 |
+
model=model,
|
| 32 |
+
tokenizer=tokenizer
|
| 33 |
+
)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Ошибка загрузки модели: {str(e)}")
|
| 36 |
+
generator = None
|
| 37 |
+
|
| 38 |
+
@app.post("/generate")
|
| 39 |
+
async def generate_text(request: RequestData):
|
| 40 |
+
if not generator:
|
| 41 |
+
raise HTTPException(status_code=503, detail="Модель не загружена")
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
output = generator(
|
| 45 |
+
request.prompt,
|
| 46 |
+
max_new_tokens=min(request.max_tokens, 100),
|
| 47 |
+
do_sample=False,
|
| 48 |
+
num_beams=1,
|
| 49 |
+
temperature=0.7,
|
| 50 |
+
)
|
| 51 |
+
return {"response": output[0]["generated_text"]}
|
| 52 |
+
except Exception as e:
|
| 53 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 54 |
+
|
| 55 |
+
@app.get("/health")
|
| 56 |
+
async def health_check():
|
| 57 |
+
return {"status": "ok" if generator else "unavailable"}
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.109.0
|
| 2 |
+
uvicorn==0.27.0
|
| 3 |
+
torch==2.2.1 --index-url https://download.pytorch.org/whl/cpu
|
| 4 |
+
transformers==4.40.2
|
| 5 |
+
accelerate==0.29.3
|
| 6 |
+
sentencepiece==0.2.0
|
| 7 |
+
numpy==1.26.4
|
| 8 |
+
protobuf==3.20.3
|