Spaces:
Sleeping
Sleeping
Updated app.py to include optional reviewers
Browse files
app.py
CHANGED
|
@@ -45,7 +45,10 @@ print(f"Model loaded successfully with {len(id2label)} reviewers")
|
|
| 45 |
|
| 46 |
|
| 47 |
def predict_reviewers(
|
| 48 |
-
pr_title: str,
|
|
|
|
|
|
|
|
|
|
| 49 |
) -> tuple[str, str]:
|
| 50 |
"""
|
| 51 |
Predict reviewers for a PR based on title and modified files.
|
|
@@ -54,6 +57,7 @@ def predict_reviewers(
|
|
| 54 |
pr_title: The PR title/description
|
| 55 |
files_input: Comma or semicolon separated list of modified files
|
| 56 |
threshold: Prediction threshold (0-1)
|
|
|
|
| 57 |
|
| 58 |
Returns:
|
| 59 |
tuple: (formatted_predictions, all_scores_json)
|
|
@@ -78,6 +82,18 @@ def predict_reviewers(
|
|
| 78 |
if threshold < 0 or threshold > 1:
|
| 79 |
return "⚠️ Threshold must be between 0 and 1", ""
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
# Format input for the model
|
| 82 |
files_text = f"files: {', '.join(files_list)}"
|
| 83 |
|
|
@@ -102,7 +118,7 @@ def predict_reviewers(
|
|
| 102 |
all_scores = {}
|
| 103 |
|
| 104 |
for idx, prob in enumerate(probabilities):
|
| 105 |
-
reviewer_name =
|
| 106 |
all_scores[reviewer_name] = float(prob)
|
| 107 |
|
| 108 |
if prob > threshold:
|
|
@@ -153,11 +169,17 @@ def predict_reviewers(
|
|
| 153 |
|
| 154 |
# Example inputs
|
| 155 |
examples = [
|
| 156 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
[
|
| 158 |
"Add new payment gateway integration",
|
| 159 |
"gateway.py; payment_routes.py; config.py",
|
| 160 |
0.5,
|
|
|
|
| 161 |
],
|
| 162 |
]
|
| 163 |
|
|
@@ -197,18 +219,41 @@ with gr.Blocks(title="PR Reviewer Assignment", theme=gr.themes.Soft()) as demo:
|
|
| 197 |
info="Only show predictions above this confidence score",
|
| 198 |
)
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
predict_btn = gr.Button("Predict Reviewers", variant="primary", size="lg")
|
| 201 |
|
| 202 |
with gr.Column(scale=3):
|
| 203 |
prediction_output = gr.Markdown(label="Predictions")
|
| 204 |
|
| 205 |
-
with gr.Accordion("Detailed JSON Output", open=False):
|
| 206 |
json_output = gr.JSON(label="Full Prediction Details")
|
| 207 |
|
| 208 |
# Connect the button
|
| 209 |
predict_btn.click(
|
| 210 |
fn=predict_reviewers,
|
| 211 |
-
inputs=[pr_title_input, files_input, threshold_input],
|
| 212 |
outputs=[prediction_output, json_output],
|
| 213 |
)
|
| 214 |
|
|
@@ -216,7 +261,7 @@ with gr.Blocks(title="PR Reviewer Assignment", theme=gr.themes.Soft()) as demo:
|
|
| 216 |
gr.Markdown("### Example Inputs")
|
| 217 |
gr.Examples(
|
| 218 |
examples=examples,
|
| 219 |
-
inputs=[pr_title_input, files_input, threshold_input],
|
| 220 |
outputs=[prediction_output, json_output],
|
| 221 |
fn=predict_reviewers,
|
| 222 |
cache_examples=False,
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
def predict_reviewers(
|
| 48 |
+
pr_title: str,
|
| 49 |
+
files_input: str,
|
| 50 |
+
threshold: float = DEFAULT_THRESHOLD,
|
| 51 |
+
custom_mapping: str = "",
|
| 52 |
) -> tuple[str, str]:
|
| 53 |
"""
|
| 54 |
Predict reviewers for a PR based on title and modified files.
|
|
|
|
| 57 |
pr_title: The PR title/description
|
| 58 |
files_input: Comma or semicolon separated list of modified files
|
| 59 |
threshold: Prediction threshold (0-1)
|
| 60 |
+
custom_mapping: Optional JSON mapping of label IDs to names
|
| 61 |
|
| 62 |
Returns:
|
| 63 |
tuple: (formatted_predictions, all_scores_json)
|
|
|
|
| 82 |
if threshold < 0 or threshold > 1:
|
| 83 |
return "⚠️ Threshold must be between 0 and 1", ""
|
| 84 |
|
| 85 |
+
# Parse custom mapping if provided
|
| 86 |
+
label_mapping = id2label # Default to model's labels
|
| 87 |
+
if custom_mapping and custom_mapping.strip():
|
| 88 |
+
try:
|
| 89 |
+
parsed_mapping = json.loads(custom_mapping)
|
| 90 |
+
# Convert string keys to integers
|
| 91 |
+
label_mapping = {int(k): v for k, v in parsed_mapping.items()}
|
| 92 |
+
except json.JSONDecodeError:
|
| 93 |
+
return "⚠️ Invalid JSON format for custom mapping", ""
|
| 94 |
+
except (ValueError, TypeError):
|
| 95 |
+
return "⚠️ Custom mapping must have numeric keys", ""
|
| 96 |
+
|
| 97 |
# Format input for the model
|
| 98 |
files_text = f"files: {', '.join(files_list)}"
|
| 99 |
|
|
|
|
| 118 |
all_scores = {}
|
| 119 |
|
| 120 |
for idx, prob in enumerate(probabilities):
|
| 121 |
+
reviewer_name = label_mapping.get(idx, f"label_{idx}")
|
| 122 |
all_scores[reviewer_name] = float(prob)
|
| 123 |
|
| 124 |
if prob > threshold:
|
|
|
|
| 169 |
|
| 170 |
# Example inputs
|
| 171 |
examples = [
|
| 172 |
+
[
|
| 173 |
+
"Fix authentication bug in user service",
|
| 174 |
+
"auth.py, user.py, test_auth.py",
|
| 175 |
+
0.5,
|
| 176 |
+
"",
|
| 177 |
+
],
|
| 178 |
[
|
| 179 |
"Add new payment gateway integration",
|
| 180 |
"gateway.py; payment_routes.py; config.py",
|
| 181 |
0.5,
|
| 182 |
+
"",
|
| 183 |
],
|
| 184 |
]
|
| 185 |
|
|
|
|
| 219 |
info="Only show predictions above this confidence score",
|
| 220 |
)
|
| 221 |
|
| 222 |
+
with gr.Accordion("Custom Label Mapping (Optional)", open=False):
|
| 223 |
+
gr.Markdown(
|
| 224 |
+
"""
|
| 225 |
+
If your deployed model has generic labels (e.g., `label_0`, `label_1`),
|
| 226 |
+
you can paste your own ID to name mapping here in JSON format.
|
| 227 |
+
|
| 228 |
+
**Example format:**
|
| 229 |
+
```json
|
| 230 |
+
{
|
| 231 |
+
"0": "John Doe",
|
| 232 |
+
"1": "Jane Smith",
|
| 233 |
+
"2": "Bob Johnson"
|
| 234 |
+
}
|
| 235 |
+
```
|
| 236 |
+
"""
|
| 237 |
+
)
|
| 238 |
+
custom_mapping_input = gr.Code(
|
| 239 |
+
label="Custom ID to Label Mapping (JSON)",
|
| 240 |
+
language="json",
|
| 241 |
+
lines=10,
|
| 242 |
+
value="",
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
predict_btn = gr.Button("Predict Reviewers", variant="primary", size="lg")
|
| 246 |
|
| 247 |
with gr.Column(scale=3):
|
| 248 |
prediction_output = gr.Markdown(label="Predictions")
|
| 249 |
|
| 250 |
+
with gr.Accordion("📋 Detailed JSON Output", open=False):
|
| 251 |
json_output = gr.JSON(label="Full Prediction Details")
|
| 252 |
|
| 253 |
# Connect the button
|
| 254 |
predict_btn.click(
|
| 255 |
fn=predict_reviewers,
|
| 256 |
+
inputs=[pr_title_input, files_input, threshold_input, custom_mapping_input],
|
| 257 |
outputs=[prediction_output, json_output],
|
| 258 |
)
|
| 259 |
|
|
|
|
| 261 |
gr.Markdown("### Example Inputs")
|
| 262 |
gr.Examples(
|
| 263 |
examples=examples,
|
| 264 |
+
inputs=[pr_title_input, files_input, threshold_input, custom_mapping_input],
|
| 265 |
outputs=[prediction_output, json_output],
|
| 266 |
fn=predict_reviewers,
|
| 267 |
cache_examples=False,
|