Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ BARK model configuration""" | |
| import os | |
| from typing import Dict, Optional, Union | |
| from ...configuration_utils import PretrainedConfig | |
| from ...utils import add_start_docstrings, logging | |
| from ..auto import CONFIG_MAPPING | |
| logger = logging.get_logger(__name__) | |
| BARK_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "suno/bark-small": "https://huggingface.co/suno/bark-small/resolve/main/config.json", | |
| "suno/bark": "https://huggingface.co/suno/bark/resolve/main/config.json", | |
| } | |
| BARK_SUBMODELCONFIG_START_DOCSTRING = """ | |
| This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model | |
| according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
| defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark) | |
| architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| block_size (`int`, *optional*, defaults to 1024): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| input_vocab_size (`int`, *optional*, defaults to 10_048): | |
| Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with | |
| regards to the chosen sub-model. | |
| output_vocab_size (`int`, *optional*, defaults to 10_048): | |
| Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented | |
| by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought | |
| with regards to the chosen sub-model. | |
| num_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the given sub-model. | |
| num_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer architecture. | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| bias (`bool`, *optional*, defaults to `True`): | |
| Whether or not to use bias in the linear layers and layer norm layers. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). | |
| """ | |
| class BarkSubModelConfig(PretrainedConfig): | |
| model_type = "bark_module" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| attribute_map = { | |
| "num_attention_heads": "num_heads", | |
| "num_hidden_layers": "num_layers", | |
| "vocab_size": "input_vocab_size", | |
| "window_size": "block_size", | |
| } | |
| def __init__( | |
| self, | |
| block_size=1024, | |
| input_vocab_size=10_048, | |
| output_vocab_size=10_048, | |
| num_layers=12, | |
| num_heads=12, | |
| hidden_size=768, | |
| dropout=0.0, | |
| bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster | |
| initializer_range=0.02, | |
| use_cache=True, | |
| **kwargs, | |
| ): | |
| self.block_size = block_size | |
| self.input_vocab_size = input_vocab_size | |
| self.output_vocab_size = output_vocab_size | |
| self.num_layers = num_layers | |
| self.num_heads = num_heads | |
| self.hidden_size = hidden_size | |
| self.dropout = dropout | |
| self.bias = bias | |
| self.use_cache = use_cache | |
| self.initializer_range = initializer_range | |
| super().__init__(**kwargs) | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name_or_path: Union[str, os.PathLike], | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| force_download: bool = False, | |
| local_files_only: bool = False, | |
| token: Optional[Union[str, bool]] = None, | |
| revision: str = "main", | |
| **kwargs, | |
| ) -> "PretrainedConfig": | |
| kwargs["cache_dir"] = cache_dir | |
| kwargs["force_download"] = force_download | |
| kwargs["local_files_only"] = local_files_only | |
| kwargs["revision"] = revision | |
| cls._set_token_in_kwargs(kwargs, token) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the config dict if we are loading from Bark | |
| if config_dict.get("model_type") == "bark": | |
| config_dict = config_dict[f"{cls.model_type}_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class BarkSemanticConfig(BarkSubModelConfig): | |
| model_type = "semantic" | |
| class BarkCoarseConfig(BarkSubModelConfig): | |
| model_type = "coarse_acoustics" | |
| class BarkFineConfig(BarkSubModelConfig): | |
| model_type = "fine_acoustics" | |
| def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs): | |
| self.n_codes_total = n_codes_total | |
| self.n_codes_given = n_codes_given | |
| super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | |
| class BarkConfig(PretrainedConfig): | |
| """ | |
| This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark | |
| model according to the specified sub-models configurations, defining the model architecture. | |
| Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark | |
| [suno/bark](https://huggingface.co/suno/bark) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| semantic_config ([`BarkSemanticConfig`], *optional*): | |
| Configuration of the underlying semantic sub-model. | |
| coarse_acoustics_config ([`BarkCoarseConfig`], *optional*): | |
| Configuration of the underlying coarse acoustics sub-model. | |
| fine_acoustics_config ([`BarkFineConfig`], *optional*): | |
| Configuration of the underlying fine acoustics sub-model. | |
| codec_config ([`AutoConfig`], *optional*): | |
| Configuration of the underlying codec sub-model. | |
| Example: | |
| ```python | |
| >>> from transformers import ( | |
| ... BarkSemanticConfig, | |
| ... BarkCoarseConfig, | |
| ... BarkFineConfig, | |
| ... BarkModel, | |
| ... BarkConfig, | |
| ... AutoConfig, | |
| ... ) | |
| >>> # Initializing Bark sub-modules configurations. | |
| >>> semantic_config = BarkSemanticConfig() | |
| >>> coarse_acoustics_config = BarkCoarseConfig() | |
| >>> fine_acoustics_config = BarkFineConfig() | |
| >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz") | |
| >>> # Initializing a Bark module style configuration | |
| >>> configuration = BarkConfig.from_sub_model_configs( | |
| ... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config | |
| ... ) | |
| >>> # Initializing a model (with random weights) | |
| >>> model = BarkModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ``` | |
| """ | |
| model_type = "bark" | |
| def __init__( | |
| self, | |
| semantic_config: Dict = None, | |
| coarse_acoustics_config: Dict = None, | |
| fine_acoustics_config: Dict = None, | |
| codec_config: Dict = None, | |
| initializer_range=0.02, | |
| **kwargs, | |
| ): | |
| if semantic_config is None: | |
| semantic_config = {} | |
| logger.info("semantic_config is None. initializing the semantic model with default values.") | |
| if coarse_acoustics_config is None: | |
| coarse_acoustics_config = {} | |
| logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") | |
| if fine_acoustics_config is None: | |
| fine_acoustics_config = {} | |
| logger.info("fine_acoustics_config is None. initializing the fine model with default values.") | |
| if codec_config is None: | |
| codec_config = {} | |
| logger.info("codec_config is None. initializing the codec model with default values.") | |
| self.semantic_config = BarkSemanticConfig(**semantic_config) | |
| self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config) | |
| self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config) | |
| codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec" | |
| self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config) | |
| self.initializer_range = initializer_range | |
| super().__init__(**kwargs) | |
| def from_sub_model_configs( | |
| cls, | |
| semantic_config: BarkSemanticConfig, | |
| coarse_acoustics_config: BarkCoarseConfig, | |
| fine_acoustics_config: BarkFineConfig, | |
| codec_config: PretrainedConfig, | |
| **kwargs, | |
| ): | |
| r""" | |
| Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration. | |
| Returns: | |
| [`BarkConfig`]: An instance of a configuration object | |
| """ | |
| return cls( | |
| semantic_config=semantic_config.to_dict(), | |
| coarse_acoustics_config=coarse_acoustics_config.to_dict(), | |
| fine_acoustics_config=fine_acoustics_config.to_dict(), | |
| codec_config=codec_config.to_dict(), | |
| **kwargs, | |
| ) | |