Spaces:
Sleeping
Sleeping
File size: 7,873 Bytes
83d7af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
!pip install git+https://github.com/facebookresearch/segment-anything.git
!pip install opencv-python pillow matplotlib
!pip uninstall -y diffusers transformers
!pip install diffusers==0.30.3 transformers==4.44.2 accelerate
!pip install gradio
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw
import cv2
from segment_anything import sam_model_registry, SamPredictor
from diffusers import StableDiffusionXLInpaintPipeline
import os
# ============================================================
# SAM SMART FOREGROUND SELECTOR - OFFLINE MODEL VERSION
# ============================================================
# Global state
global_state = {
"sam_predictor": None,
"original_image": None,
"current_mask": None,
"rgba_image": None,
"image_set": False,
"box_points": [],
"positive_points": [],
"negative_points": [],
"auto_masks": []
}
# ------------------------------------------------------------
# 🧩 Load SAM Model (Offline from /models/)
# ------------------------------------------------------------
def load_sam_model(sam_checkpoint="models/sam_vit_b_01ec64.pth"):
"""Load SAM model from local folder models/"""
if global_state["sam_predictor"] is None:
if not os.path.exists(sam_checkpoint):
raise FileNotFoundError(
f"❌ File model tidak ditemukan: {sam_checkpoint}\n"
f"Pastikan kamu sudah upload 'sam_vit_b_01ec64.pth' ke folder /models/"
)
print(f"✅ Loading SAM model from {sam_checkpoint}...")
sam = sam_model_registry["vit_b"](checkpoint=sam_checkpoint)
device = "cuda" if torch.cuda.is_available() else "cpu"
sam.to(device=device)
predictor = SamPredictor(sam)
global_state["sam_predictor"] = predictor
print(f"✅ SAM loaded successfully on {device}")
return global_state["sam_predictor"]
# ------------------------------------------------------------
# 🖼️ Step 1: Upload Image
# ------------------------------------------------------------
def process_upload(image):
if image is None:
return None, "⚠️ Upload gambar terlebih dahulu!", None, None
image_np = np.array(image)
global_state["original_image"] = image_np.copy()
predictor = load_sam_model()
predictor.set_image(image_np)
global_state["image_set"] = True
status = "✅ Gambar berhasil diupload!\n\nKlik 'Auto Smart Select' atau gunakan Box/Point untuk memilih objek."
return Image.fromarray(image_np), status, None, None
# ------------------------------------------------------------
# ✨ Step 2: Auto Smart Select (Pilih Objek Otomatis)
# ------------------------------------------------------------
def auto_smart_select():
if not global_state["image_set"]:
return None, None, "⚠️ Upload gambar terlebih dahulu!"
from segment_anything import SamAutomaticMaskGenerator
predictor = global_state["sam_predictor"]
sam_model = predictor.model
mask_generator = SamAutomaticMaskGenerator(
model=sam_model,
points_per_side=32,
pred_iou_thresh=0.88,
stability_score_thresh=0.93,
min_mask_region_area=500
)
masks = mask_generator.generate(global_state["original_image"])
if not masks:
return None, None, "❌ Tidak ada objek terdeteksi."
# Pilih mask terbaik berdasarkan area dan posisi tengah
h, w = global_state["original_image"].shape[:2]
center_x, center_y = w // 2, h // 2
def score_mask(mask_data):
mask = mask_data['segmentation']
y, x = np.where(mask)
if len(x) == 0: return 0
dist = np.sqrt((x.mean() - center_x)**2 + (y.mean() - center_y)**2)
dist_score = 1 - (dist / np.sqrt(center_x**2 + center_y**2))
area_ratio = mask_data['area'] / (h * w)
size_score = 1 - abs(area_ratio - 0.15) # ideal sekitar 15%
return dist_score * 0.6 + size_score * 0.4
best_mask = max(masks, key=score_mask)['segmentation']
rgba_image = np.dstack((global_state["original_image"], (best_mask * 255).astype(np.uint8)))
global_state["current_mask"] = best_mask
global_state["rgba_image"] = rgba_image
segmented_preview = Image.fromarray(rgba_image)
mask_preview = Image.fromarray((best_mask * 255).astype(np.uint8))
status = "✅ Foreground otomatis terpilih!\nKlik 'Generate Background' untuk mengganti latar belakang."
return segmented_preview, mask_preview, status
# ------------------------------------------------------------
# 🎨 Step 3: Ganti Background dengan Prompt
# ------------------------------------------------------------
def change_background(background_prompt, negative_prompt, guidance_scale, num_steps, seed):
if global_state["rgba_image"] is None:
return None, "⚠️ Generate mask dulu!"
rgba_image = Image.fromarray(global_state["rgba_image"])
pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
torch_dtype=torch.float16,
variant="fp16"
)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
alpha = np.array(rgba_image.split()[-1])
mask = np.where(alpha < 128, 255, 0).astype(np.uint8)
mask = Image.fromarray(mask).convert("L")
rgb_image = rgba_image.convert("RGB")
generator = torch.manual_seed(int(seed))
result = pipeline(
image=rgb_image,
mask_image=mask,
prompt=background_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator,
num_inference_steps=int(num_steps),
width=rgb_image.width,
height=rgb_image.height
).images[0]
status = f"✅ Background diganti: {background_prompt}"
return result, status
# ------------------------------------------------------------
# 🧱 Gradio UI
# ------------------------------------------------------------
def create_gradio_interface():
with gr.Blocks(title="AI Background Maker (Offline SAM)") as demo:
gr.Markdown("# 🖼️ AI Background Maker\nUpload foto → Pilih objek → Ganti background ✨")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Gambar", type="pil")
upload_btn = gr.Button("📥 Load Image", variant="primary")
auto_smart_btn = gr.Button("🤖 Auto Smart Select (No Click!)", variant="primary")
bg_prompt = gr.Textbox(value="sunset beach, cinematic, 8k", label="Background Prompt")
neg_prompt = gr.Textbox(value="blurry, low quality", label="Negative Prompt")
guidance = gr.Slider(1, 15, 7, 0.5, label="Guidance Scale")
steps = gr.Slider(10, 50, 30, 5, label="Steps")
seed = gr.Number(value=42, label="Seed")
gen_bg = gr.Button("🚀 Generate Background", variant="secondary")
with gr.Column(scale=1):
status = gr.Textbox(label="Status", lines=5)
segmented = gr.Image(label="Foreground")
mask = gr.Image(label="Mask")
result = gr.Image(label="Final Output")
result_status = gr.Textbox(label="Output Status", lines=2)
upload_btn.click(process_upload, inputs=[input_image],
outputs=[segmented, status, mask, result])
auto_smart_btn.click(auto_smart_select, outputs=[segmented, mask, status])
gen_bg.click(change_background,
inputs=[bg_prompt, neg_prompt, guidance, steps, seed],
outputs=[result, result_status])
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True, debug=True, server_name="0.0.0.0", server_port=7860)
|