Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,23 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
-
from
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
import uuid
|
| 8 |
import cv2
|
| 9 |
import torch
|
| 10 |
-
from PIL import Image
|
|
|
|
| 11 |
import json
|
| 12 |
-
from typing import List, Optional
|
| 13 |
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
|
| 14 |
-
from huggingface_hub import hf_hub_download
|
| 15 |
from diffusers import StableDiffusionXLInpaintPipeline
|
| 16 |
|
| 17 |
# ======================================================
|
| 18 |
-
#
|
| 19 |
# ======================================================
|
| 20 |
app = FastAPI(title="AI Background Changer API")
|
| 21 |
|
|
@@ -31,82 +33,105 @@ app.add_middleware(
|
|
| 31 |
# DIRECTORIES
|
| 32 |
# ======================================================
|
| 33 |
UPLOAD_DIR = "uploads"
|
| 34 |
-
|
| 35 |
-
MODELS_DIR = "models"
|
| 36 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 37 |
-
os.makedirs(
|
| 38 |
-
os.makedirs(MODELS_DIR, exist_ok=True)
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
# ======================================================
|
| 43 |
-
# GLOBAL STATE
|
| 44 |
# ======================================================
|
| 45 |
-
global_models = {
|
| 46 |
-
"sam_predictor": None,
|
| 47 |
-
"inpaint_pipeline": None,
|
| 48 |
-
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
sessions = {}
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
local_dir="models",
|
| 63 |
-
local_dir_use_symlinks=False
|
| 64 |
-
)
|
| 65 |
-
print("SAM checkpoint downloaded!")
|
| 66 |
-
return SAM_CHECKPOINT
|
| 67 |
|
| 68 |
# ======================================================
|
| 69 |
-
#
|
| 70 |
# ======================================================
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
sam = sam_model_registry["vit_b"](checkpoint=SAM_CHECKPOINT)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
|
| 84 |
def load_inpaint_pipeline():
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
| 88 |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 89 |
-
torch_dtype=torch.float16
|
|
|
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# ======================================================
|
| 97 |
-
#
|
| 98 |
# ======================================================
|
| 99 |
-
def
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# ======================================================
|
| 112 |
# ENDPOINTS
|
|
@@ -114,113 +139,448 @@ def save_image(image_array, suffix=""):
|
|
| 114 |
@app.get("/")
|
| 115 |
def home():
|
| 116 |
return {
|
| 117 |
-
"message": "API
|
| 118 |
-
"endpoints":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
}
|
| 120 |
|
| 121 |
@app.post("/upload")
|
| 122 |
async def upload_image(file: UploadFile = File(...)):
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
async def generate_background(
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
negative_prompt: str = Form("blurry"),
|
| 193 |
-
guidance_scale: float = Form(7.0),
|
| 194 |
-
num_steps: int = Form(30)
|
| 195 |
):
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - AI Background Changer API
|
| 2 |
+
|
| 3 |
+
from fastapi import FastAPI, File, UploadFile, Form, BackgroundTasks, HTTPException
|
| 4 |
+
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
from typing import Optional, List
|
| 8 |
import numpy as np
|
| 9 |
import os
|
| 10 |
import uuid
|
| 11 |
import cv2
|
| 12 |
import torch
|
| 13 |
+
from PIL import Image, ImageDraw
|
| 14 |
+
import io
|
| 15 |
import json
|
|
|
|
| 16 |
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
|
|
|
|
| 17 |
from diffusers import StableDiffusionXLInpaintPipeline
|
| 18 |
|
| 19 |
# ======================================================
|
| 20 |
+
# CONFIGURATION
|
| 21 |
# ======================================================
|
| 22 |
app = FastAPI(title="AI Background Changer API")
|
| 23 |
|
|
|
|
| 33 |
# DIRECTORIES
|
| 34 |
# ======================================================
|
| 35 |
UPLOAD_DIR = "uploads"
|
| 36 |
+
RESULT_DIR = "results"
|
|
|
|
| 37 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 38 |
+
os.makedirs(RESULT_DIR, exist_ok=True)
|
|
|
|
| 39 |
|
| 40 |
+
MODEL_DIR = "models"
|
| 41 |
+
SAM_CHECKPOINT = os.path.join(MODEL_DIR, "sam_vit_b_01ec64.pth")
|
| 42 |
|
| 43 |
# ======================================================
|
| 44 |
+
# GLOBAL STATE (In-memory session storage)
|
| 45 |
# ======================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
sessions = {}
|
| 47 |
|
| 48 |
+
class SessionData:
|
| 49 |
+
def __init__(self):
|
| 50 |
+
self.original_image = None
|
| 51 |
+
self.current_mask = None
|
| 52 |
+
self.rgba_image = None
|
| 53 |
+
self.image_set = False
|
| 54 |
+
self.box_points = []
|
| 55 |
+
self.positive_points = []
|
| 56 |
+
self.negative_points = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# ======================================================
|
| 59 |
+
# MODELS
|
| 60 |
# ======================================================
|
| 61 |
+
sam_predictor = None
|
| 62 |
+
inpaint_pipeline = None
|
| 63 |
|
| 64 |
+
def load_sam_model():
|
| 65 |
+
global sam_predictor
|
| 66 |
+
if sam_predictor is None:
|
| 67 |
+
if not os.path.exists(SAM_CHECKPOINT):
|
| 68 |
+
raise FileNotFoundError(f"SAM model not found at {SAM_CHECKPOINT}")
|
| 69 |
+
|
| 70 |
sam = sam_model_registry["vit_b"](checkpoint=SAM_CHECKPOINT)
|
| 71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 72 |
+
sam.to(device=device)
|
| 73 |
+
|
| 74 |
+
sam_predictor = SamPredictor(sam)
|
| 75 |
+
print(f"✅ SAM loaded on {device}")
|
| 76 |
+
|
| 77 |
+
return sam_predictor
|
| 78 |
|
| 79 |
def load_inpaint_pipeline():
|
| 80 |
+
global inpaint_pipeline
|
| 81 |
+
if inpaint_pipeline is None:
|
| 82 |
+
print("🎨 Loading Stable Diffusion XL Inpainting...")
|
| 83 |
+
inpaint_pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 84 |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 85 |
+
torch_dtype=torch.float16,
|
| 86 |
+
variant="fp16",
|
| 87 |
)
|
| 88 |
+
|
| 89 |
+
if torch.cuda.is_available():
|
| 90 |
+
inpaint_pipeline = inpaint_pipeline.to("cuda")
|
| 91 |
+
|
| 92 |
+
print("✅ Inpainting model loaded")
|
| 93 |
+
|
| 94 |
+
return inpaint_pipeline
|
| 95 |
+
|
| 96 |
+
# ======================================================
|
| 97 |
+
# PYDANTIC MODELS
|
| 98 |
+
# ======================================================
|
| 99 |
+
class ClickRequest(BaseModel):
|
| 100 |
+
session_id: str
|
| 101 |
+
x: int
|
| 102 |
+
y: int
|
| 103 |
+
mode: str # "box", "positive", "negative"
|
| 104 |
+
|
| 105 |
+
class MaskRequest(BaseModel):
|
| 106 |
+
session_id: str
|
| 107 |
+
|
| 108 |
+
class BackgroundRequest(BaseModel):
|
| 109 |
+
session_id: str
|
| 110 |
+
background_prompt: str
|
| 111 |
+
negative_prompt: Optional[str] = "low quality, blurry"
|
| 112 |
+
guidance_scale: Optional[float] = 7.0
|
| 113 |
+
num_steps: Optional[int] = 30
|
| 114 |
+
seed: Optional[int] = 42
|
| 115 |
|
| 116 |
# ======================================================
|
| 117 |
+
# HELPER FUNCTIONS
|
| 118 |
# ======================================================
|
| 119 |
+
async def cleanup_files(paths: list):
|
| 120 |
+
for path in paths:
|
| 121 |
+
if os.path.exists(path):
|
| 122 |
+
os.remove(path)
|
| 123 |
+
print(f"🧹 File deleted: {path}")
|
| 124 |
|
| 125 |
+
def get_session(session_id: str) -> SessionData:
|
| 126 |
+
if session_id not in sessions:
|
| 127 |
+
sessions[session_id] = SessionData()
|
| 128 |
+
return sessions[session_id]
|
| 129 |
|
| 130 |
+
def pil_to_bytes(img: Image.Image, format="PNG") -> bytes:
|
| 131 |
+
buf = io.BytesIO()
|
| 132 |
+
img.save(buf, format=format)
|
| 133 |
+
buf.seek(0)
|
| 134 |
+
return buf.getvalue()
|
| 135 |
|
| 136 |
# ======================================================
|
| 137 |
# ENDPOINTS
|
|
|
|
| 139 |
@app.get("/")
|
| 140 |
def home():
|
| 141 |
return {
|
| 142 |
+
"message": "✅ AI Background Changer API is running!",
|
| 143 |
+
"endpoints": {
|
| 144 |
+
"upload": "POST /upload - Upload image",
|
| 145 |
+
"click": "POST /click - Add prompt point",
|
| 146 |
+
"generate_mask": "POST /generate_mask - Generate segmentation mask",
|
| 147 |
+
"auto_segment": "POST /auto_segment - Auto segment all objects",
|
| 148 |
+
"auto_smart_select": "POST /auto_smart_select - Auto select foreground",
|
| 149 |
+
"reset": "POST /reset - Reset session prompts",
|
| 150 |
+
"generate_background": "POST /generate_background - Change background",
|
| 151 |
+
"get_preview": "GET /preview/{session_id} - Get current preview"
|
| 152 |
+
}
|
| 153 |
}
|
| 154 |
|
| 155 |
@app.post("/upload")
|
| 156 |
async def upload_image(file: UploadFile = File(...)):
|
| 157 |
+
"""Upload image and initialize SAM"""
|
| 158 |
+
try:
|
| 159 |
+
# Create session
|
| 160 |
+
session_id = str(uuid.uuid4())
|
| 161 |
+
session = get_session(session_id)
|
| 162 |
+
|
| 163 |
+
# Read image
|
| 164 |
+
contents = await file.read()
|
| 165 |
+
nparr = np.frombuffer(contents, np.uint8)
|
| 166 |
+
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 167 |
+
|
| 168 |
+
if image is None:
|
| 169 |
+
raise HTTPException(status_code=400, detail="Invalid image file")
|
| 170 |
+
|
| 171 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 172 |
+
|
| 173 |
+
# Store in session
|
| 174 |
+
session.original_image = image.copy()
|
| 175 |
+
session.image_set = False
|
| 176 |
+
|
| 177 |
+
# Load SAM and set image
|
| 178 |
+
predictor = load_sam_model()
|
| 179 |
+
predictor.set_image(image)
|
| 180 |
+
session.image_set = True
|
| 181 |
+
|
| 182 |
+
print(f"�� Image uploaded: {image.shape}, session: {session_id}")
|
| 183 |
+
|
| 184 |
+
return {
|
| 185 |
+
"session_id": session_id,
|
| 186 |
+
"width": int(image.shape[1]),
|
| 187 |
+
"height": int(image.shape[0]),
|
| 188 |
+
"message": "Image uploaded successfully"
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 193 |
+
|
| 194 |
+
@app.post("/click")
|
| 195 |
+
async def add_click(request: ClickRequest):
|
| 196 |
+
"""Add click point (box, positive, or negative)"""
|
| 197 |
+
try:
|
| 198 |
+
session = get_session(request.session_id)
|
| 199 |
+
|
| 200 |
+
if not session.image_set:
|
| 201 |
+
raise HTTPException(status_code=400, detail="Upload image first")
|
| 202 |
+
|
| 203 |
+
if request.mode == "box":
|
| 204 |
+
if len(session.box_points) < 2:
|
| 205 |
+
session.box_points.append([request.x, request.y])
|
| 206 |
+
else:
|
| 207 |
+
session.box_points = [[request.x, request.y]]
|
| 208 |
+
elif request.mode == "positive":
|
| 209 |
+
session.positive_points.append([request.x, request.y])
|
| 210 |
+
elif request.mode == "negative":
|
| 211 |
+
session.negative_points.append([request.x, request.y])
|
| 212 |
+
|
| 213 |
+
# Create preview with points
|
| 214 |
+
img_pil = Image.fromarray(session.original_image.copy())
|
| 215 |
+
draw = ImageDraw.Draw(img_pil)
|
| 216 |
+
|
| 217 |
+
# Draw box
|
| 218 |
+
if len(session.box_points) > 0:
|
| 219 |
+
if len(session.box_points) == 1:
|
| 220 |
+
x, y = session.box_points[0]
|
| 221 |
+
draw.ellipse([x-8, y-8, x+8, y+8], fill=(0, 150, 255), outline=(255, 255, 255), width=3)
|
| 222 |
+
else:
|
| 223 |
+
x1, y1 = session.box_points[0]
|
| 224 |
+
x2, y2 = session.box_points[1]
|
| 225 |
+
draw.rectangle([x1, y1, x2, y2], outline=(0, 150, 255), width=4)
|
| 226 |
+
draw.ellipse([x1-8, y1-8, x1+8, y1+8], fill=(0, 150, 255), outline=(255, 255, 255), width=3)
|
| 227 |
+
draw.ellipse([x2-8, y2-8, x2+8, y2+8], fill=(0, 150, 255), outline=(255, 255, 255), width=3)
|
| 228 |
+
|
| 229 |
+
# Draw positive points
|
| 230 |
+
for px, py in session.positive_points:
|
| 231 |
+
draw.ellipse([px-10, py-10, px+10, py+10], fill=(0, 255, 0), outline=(255, 255, 255), width=3)
|
| 232 |
+
|
| 233 |
+
# Draw negative points
|
| 234 |
+
for nx, ny in session.negative_points:
|
| 235 |
+
draw.ellipse([nx-10, ny-10, nx+10, ny+10], fill=(255, 0, 0), outline=(255, 255, 255), width=3)
|
| 236 |
+
|
| 237 |
+
img_bytes = pil_to_bytes(img_pil)
|
| 238 |
+
|
| 239 |
+
return StreamingResponse(io.BytesIO(img_bytes), media_type="image/png")
|
| 240 |
+
|
| 241 |
+
except Exception as e:
|
| 242 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 243 |
+
|
| 244 |
+
@app.post("/generate_mask")
|
| 245 |
+
async def generate_mask(request: MaskRequest):
|
| 246 |
+
"""Generate segmentation mask from prompts"""
|
| 247 |
+
try:
|
| 248 |
+
session = get_session(request.session_id)
|
| 249 |
+
|
| 250 |
+
if not session.image_set:
|
| 251 |
+
raise HTTPException(status_code=400, detail="Upload image first")
|
| 252 |
+
|
| 253 |
+
has_box = len(session.box_points) == 2
|
| 254 |
+
has_points = len(session.positive_points) > 0
|
| 255 |
+
|
| 256 |
+
if not has_box and not has_points:
|
| 257 |
+
raise HTTPException(status_code=400, detail="Add prompts first (box or points)")
|
| 258 |
+
|
| 259 |
+
predictor = load_sam_model()
|
| 260 |
+
|
| 261 |
+
box = None
|
| 262 |
+
points = None
|
| 263 |
+
labels = None
|
| 264 |
+
|
| 265 |
+
# Box prompt
|
| 266 |
+
if has_box:
|
| 267 |
+
x1, y1 = session.box_points[0]
|
| 268 |
+
x2, y2 = session.box_points[1]
|
| 269 |
+
box = np.array([min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2)])
|
| 270 |
+
|
| 271 |
+
# Point prompts
|
| 272 |
+
if has_points or session.negative_points:
|
| 273 |
+
point_list = []
|
| 274 |
+
label_list = []
|
| 275 |
+
|
| 276 |
+
for px, py in session.positive_points:
|
| 277 |
+
point_list.append([px, py])
|
| 278 |
+
label_list.append(1)
|
| 279 |
+
|
| 280 |
+
for nx, ny in session.negative_points:
|
| 281 |
+
point_list.append([nx, ny])
|
| 282 |
+
label_list.append(0)
|
| 283 |
+
|
| 284 |
+
points = np.array(point_list)
|
| 285 |
+
labels = np.array(label_list)
|
| 286 |
+
|
| 287 |
+
# Predict
|
| 288 |
+
masks, scores, logits = predictor.predict(
|
| 289 |
+
point_coords=points,
|
| 290 |
+
point_labels=labels,
|
| 291 |
+
box=box,
|
| 292 |
+
multimask_output=True
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
best_idx = np.argmax(scores)
|
| 296 |
+
mask = masks[best_idx]
|
| 297 |
+
score = scores[best_idx]
|
| 298 |
+
|
| 299 |
+
session.current_mask = mask
|
| 300 |
+
|
| 301 |
+
# Create RGBA
|
| 302 |
+
image = session.original_image
|
| 303 |
+
rgba_image = np.dstack((image, (mask * 255).astype(np.uint8)))
|
| 304 |
+
session.rgba_image = rgba_image
|
| 305 |
+
|
| 306 |
+
# Convert to PIL
|
| 307 |
+
segmented_pil = Image.fromarray(rgba_image)
|
| 308 |
+
|
| 309 |
+
mask_visual = (mask * 255).astype(np.uint8)
|
| 310 |
+
mask_visual_rgb = np.stack([mask_visual] * 3, axis=-1)
|
| 311 |
+
mask_pil = Image.fromarray(mask_visual_rgb)
|
| 312 |
+
|
| 313 |
+
# Statistics
|
| 314 |
+
mask_area = mask.sum()
|
| 315 |
+
total_area = image.shape[0] * image.shape[1]
|
| 316 |
+
area_percentage = (mask_area / total_area) * 100
|
| 317 |
+
|
| 318 |
+
# Return segmented image
|
| 319 |
+
img_bytes = pil_to_bytes(segmented_pil)
|
| 320 |
+
|
| 321 |
+
return StreamingResponse(
|
| 322 |
+
io.BytesIO(img_bytes),
|
| 323 |
+
media_type="image/png",
|
| 324 |
+
headers={
|
| 325 |
+
"X-Score": str(float(score)),
|
| 326 |
+
"X-Area-Percentage": str(float(area_percentage)),
|
| 327 |
+
"X-Method": "box" if has_box else "points"
|
| 328 |
+
}
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
except Exception as e:
|
| 332 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 333 |
+
|
| 334 |
+
@app.post("/auto_segment")
|
| 335 |
+
async def auto_segment_all(request: MaskRequest):
|
| 336 |
+
"""Auto segment and show all objects"""
|
| 337 |
+
try:
|
| 338 |
+
session = get_session(request.session_id)
|
| 339 |
+
|
| 340 |
+
if not session.image_set:
|
| 341 |
+
raise HTTPException(status_code=400, detail="Upload image first")
|
| 342 |
+
|
| 343 |
+
predictor = load_sam_model()
|
| 344 |
+
sam_model = predictor.model
|
| 345 |
+
|
| 346 |
+
mask_generator = SamAutomaticMaskGenerator(
|
| 347 |
+
model=sam_model,
|
| 348 |
+
points_per_side=32,
|
| 349 |
+
pred_iou_thresh=0.86,
|
| 350 |
+
stability_score_thresh=0.92,
|
| 351 |
+
min_mask_region_area=100
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
masks = mask_generator.generate(session.original_image)
|
| 355 |
+
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
|
| 356 |
+
|
| 357 |
+
# Create visualization
|
| 358 |
+
image = session.original_image.copy()
|
| 359 |
+
h, w = image.shape[:2]
|
| 360 |
+
overlay = np.zeros((h, w, 3), dtype=np.uint8)
|
| 361 |
+
|
| 362 |
+
colors = [
|
| 363 |
+
[255, 0, 0], [0, 255, 0], [0, 0, 255],
|
| 364 |
+
[255, 255, 0], [255, 0, 255], [0, 255, 255],
|
| 365 |
+
[128, 0, 0], [0, 128, 0], [0, 0, 128]
|
| 366 |
+
]
|
| 367 |
+
|
| 368 |
+
objects_info = []
|
| 369 |
+
for i, mask_data in enumerate(masks[:9]):
|
| 370 |
+
mask = mask_data['segmentation']
|
| 371 |
+
color = colors[i % len(colors)]
|
| 372 |
+
overlay[mask] = color
|
| 373 |
+
|
| 374 |
+
area_pct = (mask_data['area'] / (h * w)) * 100
|
| 375 |
+
objects_info.append({
|
| 376 |
+
"index": i + 1,
|
| 377 |
+
"area_percentage": float(area_pct),
|
| 378 |
+
"color": color
|
| 379 |
+
})
|
| 380 |
+
|
| 381 |
+
result = cv2.addWeighted(image, 0.6, overlay, 0.4, 0)
|
| 382 |
+
result_pil = Image.fromarray(result)
|
| 383 |
+
|
| 384 |
+
img_bytes = pil_to_bytes(result_pil)
|
| 385 |
+
|
| 386 |
+
return StreamingResponse(
|
| 387 |
+
io.BytesIO(img_bytes),
|
| 388 |
+
media_type="image/png",
|
| 389 |
+
headers={
|
| 390 |
+
"X-Objects-Found": str(len(masks)),
|
| 391 |
+
"X-Objects-Info": json.dumps(objects_info)
|
| 392 |
+
}
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
except Exception as e:
|
| 396 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 397 |
+
|
| 398 |
+
@app.post("/auto_smart_select")
|
| 399 |
+
async def auto_smart_select(request: MaskRequest):
|
| 400 |
+
"""Automatically select the best foreground object"""
|
| 401 |
+
try:
|
| 402 |
+
session = get_session(request.session_id)
|
| 403 |
+
|
| 404 |
+
if not session.image_set:
|
| 405 |
+
raise HTTPException(status_code=400, detail="Upload image first")
|
| 406 |
+
|
| 407 |
+
predictor = load_sam_model()
|
| 408 |
+
sam_model = predictor.model
|
| 409 |
+
|
| 410 |
+
mask_generator = SamAutomaticMaskGenerator(
|
| 411 |
+
model=sam_model,
|
| 412 |
+
points_per_side=32,
|
| 413 |
+
pred_iou_thresh=0.88,
|
| 414 |
+
stability_score_thresh=0.93,
|
| 415 |
+
min_mask_region_area=500
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
masks = mask_generator.generate(session.original_image)
|
| 419 |
+
|
| 420 |
+
if len(masks) == 0:
|
| 421 |
+
raise HTTPException(status_code=400, detail="No objects detected")
|
| 422 |
+
|
| 423 |
+
# Smart selection
|
| 424 |
+
image = session.original_image
|
| 425 |
+
h, w = image.shape[:2]
|
| 426 |
+
center_x, center_y = w // 2, h // 2
|
| 427 |
+
|
| 428 |
+
def score_mask(mask_data):
|
| 429 |
+
mask = mask_data['segmentation']
|
| 430 |
+
area = mask_data['area']
|
| 431 |
+
stability = mask_data['stability_score']
|
| 432 |
+
|
| 433 |
+
y_coords, x_coords = np.where(mask)
|
| 434 |
+
if len(x_coords) == 0:
|
| 435 |
+
return 0
|
| 436 |
+
|
| 437 |
+
mask_center_x = x_coords.mean()
|
| 438 |
+
mask_center_y = y_coords.mean()
|
| 439 |
+
|
| 440 |
+
dist_from_center = np.sqrt((mask_center_x - center_x)**2 + (mask_center_y - center_y)**2)
|
| 441 |
+
max_dist = np.sqrt(center_x**2 + center_y**2)
|
| 442 |
+
center_score = 1 - (dist_from_center / max_dist)
|
| 443 |
+
|
| 444 |
+
area_ratio = area / (h * w)
|
| 445 |
+
if area_ratio > 0.8:
|
| 446 |
+
size_score = 0.1
|
| 447 |
+
elif area_ratio < 0.02:
|
| 448 |
+
size_score = 0.3
|
| 449 |
+
else:
|
| 450 |
+
size_score = min(area_ratio * 5, 1.0)
|
| 451 |
+
|
| 452 |
+
total_score = (center_score * 0.4 + size_score * 0.4 + stability * 0.2)
|
| 453 |
+
return total_score
|
| 454 |
+
|
| 455 |
+
scored_masks = [(score_mask(m), m) for m in masks]
|
| 456 |
+
scored_masks.sort(reverse=True, key=lambda x: x[0])
|
| 457 |
+
|
| 458 |
+
best_score, best_mask_data = scored_masks[0]
|
| 459 |
+
best_mask = best_mask_data['segmentation']
|
| 460 |
+
|
| 461 |
+
session.current_mask = best_mask
|
| 462 |
+
|
| 463 |
+
rgba_image = np.dstack((image, (best_mask * 255).astype(np.uint8)))
|
| 464 |
+
session.rgba_image = rgba_image
|
| 465 |
+
|
| 466 |
+
segmented_pil = Image.fromarray(rgba_image)
|
| 467 |
+
|
| 468 |
+
mask_area = best_mask.sum()
|
| 469 |
+
area_percentage = (mask_area / (h * w)) * 100
|
| 470 |
+
|
| 471 |
+
img_bytes = pil_to_bytes(segmented_pil)
|
| 472 |
+
|
| 473 |
+
return StreamingResponse(
|
| 474 |
+
io.BytesIO(img_bytes),
|
| 475 |
+
media_type="image/png",
|
| 476 |
+
headers={
|
| 477 |
+
"X-Selection-Score": str(float(best_score)),
|
| 478 |
+
"X-Stability": str(float(best_mask_data['stability_score'])),
|
| 479 |
+
"X-Area-Percentage": str(float(area_percentage)),
|
| 480 |
+
"X-Total-Objects": str(len(masks))
|
| 481 |
+
}
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
except Exception as e:
|
| 485 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 486 |
+
|
| 487 |
+
@app.post("/reset")
|
| 488 |
+
async def reset_prompts(request: MaskRequest):
|
| 489 |
+
"""Reset all prompts but keep the image"""
|
| 490 |
+
try:
|
| 491 |
+
session = get_session(request.session_id)
|
| 492 |
+
|
| 493 |
+
session.box_points = []
|
| 494 |
+
session.positive_points = []
|
| 495 |
+
session.negative_points = []
|
| 496 |
+
session.current_mask = None
|
| 497 |
+
|
| 498 |
+
return {"message": "Session reset successfully"}
|
| 499 |
+
|
| 500 |
+
except Exception as e:
|
| 501 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 502 |
+
|
| 503 |
+
@app.post("/generate_background")
|
| 504 |
async def generate_background(
|
| 505 |
+
background_tasks: BackgroundTasks,
|
| 506 |
+
request: BackgroundRequest
|
|
|
|
|
|
|
|
|
|
| 507 |
):
|
| 508 |
+
"""Generate new background using Stable Diffusion XL Inpainting"""
|
| 509 |
+
try:
|
| 510 |
+
session = get_session(request.session_id)
|
| 511 |
+
|
| 512 |
+
if session.rgba_image is None:
|
| 513 |
+
raise HTTPException(status_code=400, detail="Generate mask first")
|
| 514 |
+
|
| 515 |
+
print(f"🎨 Generating background: {request.background_prompt}")
|
| 516 |
+
|
| 517 |
+
# Load inpainting model
|
| 518 |
+
pipeline = load_inpaint_pipeline()
|
| 519 |
+
|
| 520 |
+
# Prepare images
|
| 521 |
+
rgba_image = Image.fromarray(session.rgba_image)
|
| 522 |
+
alpha = np.array(rgba_image.split()[-1])
|
| 523 |
+
mask = np.where(alpha < 128, 255, 0).astype(np.uint8)
|
| 524 |
+
mask = Image.fromarray(mask).convert("L")
|
| 525 |
+
|
| 526 |
+
rgb_image = rgba_image.convert("RGB")
|
| 527 |
+
|
| 528 |
+
# Generate
|
| 529 |
+
generator = torch.manual_seed(int(request.seed))
|
| 530 |
+
result = pipeline(
|
| 531 |
+
image=rgb_image,
|
| 532 |
+
mask_image=mask,
|
| 533 |
+
prompt=request.background_prompt,
|
| 534 |
+
negative_prompt=request.negative_prompt,
|
| 535 |
+
guidance_scale=request.guidance_scale,
|
| 536 |
+
generator=generator,
|
| 537 |
+
num_inference_steps=int(request.num_steps),
|
| 538 |
+
width=rgb_image.width,
|
| 539 |
+
height=rgb_image.height
|
| 540 |
+
).images[0]
|
| 541 |
+
|
| 542 |
+
# Save result
|
| 543 |
+
result_id = str(uuid.uuid4())
|
| 544 |
+
result_path = os.path.join(RESULT_DIR, f"{result_id}.png")
|
| 545 |
+
result.save(result_path)
|
| 546 |
+
|
| 547 |
+
# Schedule cleanup
|
| 548 |
+
background_tasks.add_task(cleanup_files, [result_path])
|
| 549 |
+
|
| 550 |
+
return FileResponse(
|
| 551 |
+
result_path,
|
| 552 |
+
media_type="image/png",
|
| 553 |
+
headers={
|
| 554 |
+
"X-Prompt": request.background_prompt,
|
| 555 |
+
"X-Result-ID": result_id
|
| 556 |
+
}
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
except Exception as e:
|
| 560 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 561 |
+
|
| 562 |
+
@app.get("/preview/{session_id}")
|
| 563 |
+
async def get_preview(session_id: str):
|
| 564 |
+
"""Get current image preview"""
|
| 565 |
+
try:
|
| 566 |
+
session = get_session(session_id)
|
| 567 |
+
|
| 568 |
+
if session.original_image is None:
|
| 569 |
+
raise HTTPException(status_code=400, detail="No image uploaded")
|
| 570 |
+
|
| 571 |
+
img_pil = Image.fromarray(session.original_image)
|
| 572 |
+
img_bytes = pil_to_bytes(img_pil)
|
| 573 |
+
|
| 574 |
+
return StreamingResponse(io.BytesIO(img_bytes), media_type="image/png")
|
| 575 |
+
|
| 576 |
+
except Exception as e:
|
| 577 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 578 |
+
|
| 579 |
+
@app.get("/health")
|
| 580 |
+
def health_check():
|
| 581 |
+
return {
|
| 582 |
+
"status": "healthy",
|
| 583 |
+
"sam_loaded": sam_predictor is not None,
|
| 584 |
+
"inpaint_loaded": inpaint_pipeline is not None,
|
| 585 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
| 586 |
+
}
|