--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: nci-binary-detector results: [] --- # nci-binary-detector This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0031 - Accuracy: 0.9954 - F1: 0.9959 - Precision: 0.9919 - Recall: 1.0 - Roc Auc: 0.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.0093 | 0.1634 | 100 | 0.0043 | 0.9844 | 0.9865 | 0.9763 | 0.9970 | 0.9990 | | 0.0021 | 0.3268 | 200 | 0.0036 | 0.9954 | 0.9960 | 0.9930 | 0.9990 | 0.9978 | | 0.0001 | 0.4902 | 300 | 0.0011 | 0.9988 | 0.9990 | 0.9980 | 1.0 | 0.9999 | | 0.0043 | 0.6536 | 400 | 0.0009 | 0.9959 | 0.9965 | 0.9930 | 1.0 | 1.0000 | | 0.0001 | 0.8170 | 500 | 0.0006 | 0.9988 | 0.9990 | 0.9980 | 1.0 | 1.0000 | | 0.0006 | 0.9804 | 600 | 0.0010 | 0.9977 | 0.9980 | 0.9980 | 0.9980 | 0.9999 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.1+cu128 - Datasets 4.4.1 - Tokenizers 0.22.1