router-mmBERT-base-3e-5-batch32
This model is a fine-tuned version of jhu-clsp/mmBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6479
- Accuracy: 0.6212
- Precision: 0.6206
- Recall: 0.6212
- F1: 0.6194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.7063 | 0.0232 | 50 | 0.7010 | 0.5262 | 0.5706 | 0.5262 | 0.4763 |
| 0.7301 | 0.0465 | 100 | 0.6931 | 0.5765 | 0.5767 | 0.5765 | 0.5766 |
| 0.6609 | 0.0697 | 150 | 0.7301 | 0.4848 | 0.5680 | 0.4848 | 0.3430 |
| 0.6551 | 0.0929 | 200 | 0.7030 | 0.5395 | 0.6050 | 0.5395 | 0.4140 |
| 0.6929 | 0.1162 | 250 | 0.6861 | 0.5417 | 0.5651 | 0.5417 | 0.5212 |
| 0.666 | 0.1394 | 300 | 0.6632 | 0.6102 | 0.6094 | 0.6102 | 0.6080 |
| 0.6708 | 0.1626 | 350 | 0.7310 | 0.5671 | 0.6685 | 0.5671 | 0.4676 |
| 0.6805 | 0.1859 | 400 | 0.6653 | 0.5897 | 0.5944 | 0.5897 | 0.5891 |
| 0.6947 | 0.2091 | 450 | 0.7120 | 0.5157 | 0.5950 | 0.5157 | 0.4295 |
| 0.6248 | 0.2323 | 500 | 0.6713 | 0.5953 | 0.6370 | 0.5953 | 0.5453 |
| 0.6988 | 0.2556 | 550 | 0.6682 | 0.5848 | 0.6411 | 0.5848 | 0.5193 |
| 0.6843 | 0.2788 | 600 | 0.7089 | 0.5174 | 0.6174 | 0.5174 | 0.4230 |
| 0.7576 | 0.3020 | 650 | 0.7033 | 0.5130 | 0.6062 | 0.5130 | 0.4165 |
| 0.6426 | 0.3253 | 700 | 0.6584 | 0.5964 | 0.5974 | 0.5964 | 0.5966 |
| 0.6772 | 0.3485 | 750 | 0.6716 | 0.5682 | 0.5997 | 0.5682 | 0.5476 |
| 0.6944 | 0.3717 | 800 | 0.6593 | 0.6168 | 0.6175 | 0.6168 | 0.6170 |
| 0.6491 | 0.3950 | 850 | 0.6546 | 0.6113 | 0.6293 | 0.6113 | 0.5861 |
| 0.6491 | 0.4182 | 900 | 0.6616 | 0.5958 | 0.5986 | 0.5958 | 0.5958 |
| 0.6337 | 0.4414 | 950 | 0.6718 | 0.6085 | 0.6116 | 0.6085 | 0.6084 |
| 0.6789 | 0.4647 | 1000 | 0.6569 | 0.6140 | 0.6272 | 0.6140 | 0.5940 |
| 0.7058 | 0.4879 | 1050 | 0.6596 | 0.6041 | 0.6039 | 0.6041 | 0.6040 |
| 0.7226 | 0.5112 | 1100 | 0.6544 | 0.5991 | 0.6087 | 0.5991 | 0.5786 |
| 0.6477 | 0.5344 | 1150 | 0.6754 | 0.5511 | 0.5936 | 0.5511 | 0.5167 |
| 0.6556 | 0.5576 | 1200 | 0.6955 | 0.5461 | 0.5982 | 0.5461 | 0.5023 |
| 0.6757 | 0.5809 | 1250 | 0.6546 | 0.6030 | 0.6027 | 0.6030 | 0.6028 |
| 0.6885 | 0.6041 | 1300 | 0.6620 | 0.5919 | 0.6076 | 0.5919 | 0.5853 |
| 0.6325 | 0.6273 | 1350 | 0.6538 | 0.6057 | 0.6221 | 0.6057 | 0.5803 |
| 0.6451 | 0.6506 | 1400 | 0.6691 | 0.5693 | 0.6067 | 0.5693 | 0.5448 |
| 0.6791 | 0.6738 | 1450 | 0.6569 | 0.5980 | 0.6005 | 0.5980 | 0.5981 |
| 0.6814 | 0.6970 | 1500 | 0.6572 | 0.6074 | 0.6106 | 0.6074 | 0.6073 |
| 0.6363 | 0.7203 | 1550 | 0.6777 | 0.5748 | 0.5983 | 0.5748 | 0.5613 |
| 0.6725 | 0.7435 | 1600 | 0.6482 | 0.6173 | 0.6175 | 0.6173 | 0.6133 |
| 0.6086 | 0.7667 | 1650 | 0.6557 | 0.6052 | 0.6080 | 0.6052 | 0.6052 |
| 0.6532 | 0.7900 | 1700 | 0.6549 | 0.6080 | 0.6295 | 0.6080 | 0.5788 |
| 0.6432 | 0.8132 | 1750 | 0.6547 | 0.6085 | 0.6108 | 0.6085 | 0.5997 |
| 0.6259 | 0.8364 | 1800 | 0.6517 | 0.6091 | 0.6100 | 0.6091 | 0.6093 |
| 0.6557 | 0.8597 | 1850 | 0.6462 | 0.6151 | 0.6154 | 0.6151 | 0.6106 |
| 0.6279 | 0.8829 | 1900 | 0.6455 | 0.6118 | 0.6125 | 0.6118 | 0.6062 |
| 0.6886 | 0.9061 | 1950 | 0.6548 | 0.6124 | 0.6157 | 0.6124 | 0.6122 |
| 0.6182 | 0.9294 | 2000 | 0.6472 | 0.6184 | 0.6177 | 0.6184 | 0.6171 |
| 0.6937 | 0.9526 | 2050 | 0.6459 | 0.6113 | 0.6200 | 0.6113 | 0.5950 |
| 0.6525 | 0.9758 | 2100 | 0.6493 | 0.6146 | 0.6204 | 0.6146 | 0.6021 |
| 0.6354 | 0.9991 | 2150 | 0.6480 | 0.6146 | 0.6139 | 0.6146 | 0.6136 |
| 0.7016 | 1.0223 | 2200 | 0.6455 | 0.6251 | 0.6285 | 0.6251 | 0.6169 |
| 0.6634 | 1.0455 | 2250 | 0.6465 | 0.6157 | 0.6203 | 0.6157 | 0.6049 |
| 0.6256 | 1.0688 | 2300 | 0.6448 | 0.6201 | 0.6194 | 0.6201 | 0.6183 |
| 0.6227 | 1.0920 | 2350 | 0.6451 | 0.6195 | 0.6226 | 0.6195 | 0.6113 |
| 0.6402 | 1.1152 | 2400 | 0.6571 | 0.6085 | 0.6250 | 0.6085 | 0.5838 |
| 0.6157 | 1.1385 | 2450 | 0.6561 | 0.6057 | 0.6061 | 0.6057 | 0.6059 |
| 0.6129 | 1.1617 | 2500 | 0.6549 | 0.6201 | 0.6250 | 0.6201 | 0.6097 |
| 0.6632 | 1.1849 | 2550 | 0.6468 | 0.6140 | 0.6133 | 0.6140 | 0.6127 |
| 0.6002 | 1.2082 | 2600 | 0.6535 | 0.6074 | 0.6076 | 0.6074 | 0.6075 |
| 0.6406 | 1.2314 | 2650 | 0.6536 | 0.6024 | 0.6016 | 0.6024 | 0.6013 |
| 0.6015 | 1.2546 | 2700 | 0.6603 | 0.5997 | 0.6049 | 0.5997 | 0.5988 |
| 0.6212 | 1.2779 | 2750 | 0.6595 | 0.6251 | 0.6283 | 0.6251 | 0.6172 |
| 0.6146 | 1.3011 | 2800 | 0.6656 | 0.5875 | 0.6011 | 0.5875 | 0.5819 |
| 0.6407 | 1.3243 | 2850 | 0.6646 | 0.6063 | 0.6090 | 0.6063 | 0.6063 |
| 0.6172 | 1.3476 | 2900 | 0.6722 | 0.5964 | 0.6072 | 0.5964 | 0.5927 |
| 0.5796 | 1.3708 | 2950 | 0.6527 | 0.6201 | 0.6197 | 0.6201 | 0.6173 |
| 0.6513 | 1.3941 | 3000 | 0.6570 | 0.6080 | 0.6072 | 0.6080 | 0.6070 |
| 0.6471 | 1.4173 | 3050 | 0.6524 | 0.6245 | 0.6301 | 0.6245 | 0.6139 |
| 0.6176 | 1.4405 | 3100 | 0.6563 | 0.6289 | 0.6367 | 0.6289 | 0.6168 |
| 0.5867 | 1.4638 | 3150 | 0.6567 | 0.6218 | 0.6233 | 0.6218 | 0.6157 |
| 0.6221 | 1.4870 | 3200 | 0.6566 | 0.6102 | 0.6095 | 0.6102 | 0.6094 |
| 0.5836 | 1.5102 | 3250 | 0.6544 | 0.6063 | 0.6058 | 0.6063 | 0.6059 |
| 0.6173 | 1.5335 | 3300 | 0.6542 | 0.6041 | 0.6042 | 0.6041 | 0.6041 |
| 0.5963 | 1.5567 | 3350 | 0.6557 | 0.6234 | 0.6276 | 0.6234 | 0.6142 |
| 0.6362 | 1.5799 | 3400 | 0.6521 | 0.6223 | 0.6240 | 0.6223 | 0.6161 |
| 0.6366 | 1.6032 | 3450 | 0.6492 | 0.6234 | 0.6267 | 0.6234 | 0.6153 |
| 0.6035 | 1.6264 | 3500 | 0.6525 | 0.6074 | 0.6085 | 0.6074 | 0.6076 |
| 0.6701 | 1.6496 | 3550 | 0.6485 | 0.6223 | 0.6243 | 0.6223 | 0.6156 |
| 0.6376 | 1.6729 | 3600 | 0.6483 | 0.6207 | 0.6201 | 0.6207 | 0.6186 |
| 0.5751 | 1.6961 | 3650 | 0.6474 | 0.6223 | 0.6229 | 0.6223 | 0.6178 |
| 0.6204 | 1.7193 | 3700 | 0.6492 | 0.6201 | 0.6194 | 0.6201 | 0.6187 |
| 0.6822 | 1.7426 | 3750 | 0.6488 | 0.6190 | 0.6183 | 0.6190 | 0.6175 |
| 0.6743 | 1.7658 | 3800 | 0.6477 | 0.6223 | 0.6220 | 0.6223 | 0.6196 |
| 0.6085 | 1.7890 | 3850 | 0.6474 | 0.6251 | 0.6257 | 0.6251 | 0.6207 |
| 0.5896 | 1.8123 | 3900 | 0.6482 | 0.6195 | 0.6188 | 0.6195 | 0.6182 |
| 0.6382 | 1.8355 | 3950 | 0.6472 | 0.6218 | 0.6212 | 0.6218 | 0.6197 |
| 0.6346 | 1.8587 | 4000 | 0.6478 | 0.6212 | 0.6206 | 0.6212 | 0.6192 |
| 0.5711 | 1.8820 | 4050 | 0.6482 | 0.6218 | 0.6211 | 0.6218 | 0.6201 |
| 0.6398 | 1.9052 | 4100 | 0.6483 | 0.6223 | 0.6217 | 0.6223 | 0.6206 |
| 0.5947 | 1.9284 | 4150 | 0.6480 | 0.6207 | 0.6200 | 0.6207 | 0.6191 |
| 0.7037 | 1.9517 | 4200 | 0.6480 | 0.6218 | 0.6211 | 0.6218 | 0.6201 |
| 0.5602 | 1.9749 | 4250 | 0.6478 | 0.6223 | 0.6217 | 0.6223 | 0.6206 |
| 0.6186 | 1.9981 | 4300 | 0.6479 | 0.6212 | 0.6206 | 0.6212 | 0.6194 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 43
Model tree for AmirMohseni/router-mmBERT-base-3e-5-batch32
Base model
jhu-clsp/mmBERT-base