CeLLaTe-tapt_ulmfit-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on the Mardiyyah/TAPT_data_V2_split dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0978
  • Accuracy: 0.7612

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.426 1.0 21 1.2594 0.7324
1.405 2.0 42 1.2467 0.7366
1.3785 3.0 63 1.2092 0.7403
1.364 4.0 84 1.2270 0.7360
1.3309 5.0 105 1.2189 0.7399
1.3407 6.0 126 1.2297 0.7370
1.3141 7.0 147 1.1691 0.7421
1.3039 8.0 168 1.1879 0.7474
1.2869 9.0 189 1.1552 0.7452
1.2759 10.0 210 1.1660 0.7483
1.2406 11.0 231 1.1348 0.7519
1.2622 12.0 252 1.1563 0.7457
1.271 13.0 273 1.1812 0.7414
1.259 14.0 294 1.1268 0.7505
1.2611 15.0 315 1.1653 0.7402
1.2179 16.0 336 1.1489 0.7458
1.2283 17.0 357 1.1930 0.7389
1.2087 18.0 378 1.1431 0.7512
1.2244 19.0 399 1.1522 0.7454
1.216 20.0 420 1.1481 0.7475
1.1772 21.0 441 1.1044 0.7527
1.1823 22.0 462 1.1526 0.7462
1.1769 23.0 483 1.1515 0.7464
1.165 24.0 504 1.1232 0.7523
1.1894 25.0 525 1.1750 0.7442
1.1824 26.0 546 1.1338 0.7470
1.1846 27.0 567 1.1422 0.7526
1.1713 28.0 588 1.1659 0.7448
1.1499 29.0 609 1.1670 0.7402
1.1797 30.0 630 1.1475 0.7501
1.1402 31.0 651 1.1668 0.7494
1.1691 32.0 672 1.1417 0.7485
1.1405 33.0 693 1.1255 0.7516
1.1515 34.0 714 1.1319 0.7486
1.1523 35.0 735 1.1606 0.7421
1.1479 36.0 756 1.1598 0.7477
1.1586 37.0 777 1.1303 0.7514
1.1431 38.0 798 1.1498 0.7470
1.1249 39.0 819 1.1198 0.7507
1.1488 40.0 840 1.0946 0.7597
1.1192 41.0 861 1.1658 0.7436
1.1422 42.0 882 1.1911 0.7411
1.1417 43.0 903 1.1499 0.7456
1.13 44.0 924 1.1271 0.7513
1.1321 45.0 945 1.1536 0.7503
1.1297 46.0 966 1.1400 0.7464
1.1201 47.0 987 1.1694 0.7456
1.1116 48.0 1008 1.1379 0.7496
1.1438 49.0 1029 1.1962 0.7400
1.1286 50.0 1050 1.1648 0.7470
1.1178 51.0 1071 1.1946 0.7389
1.1045 52.0 1092 1.1552 0.7498
1.1239 53.0 1113 1.1641 0.7462
1.1091 54.0 1134 1.1907 0.7471
1.0978 55.0 1155 1.1708 0.7463
1.1087 56.0 1176 1.1300 0.7515
1.1212 57.0 1197 1.1515 0.7500
1.1249 58.0 1218 1.1530 0.7510
1.1021 59.0 1239 1.1405 0.7530
1.1024 60.0 1260 1.1327 0.7536
1.1015 61.0 1281 1.1644 0.7499
1.1103 62.0 1302 1.1186 0.7507
1.1259 63.0 1323 1.1596 0.7465
1.088 64.0 1344 1.1625 0.7454
1.0948 65.0 1365 1.1463 0.7467
1.1121 66.0 1386 1.2079 0.7424
1.0971 67.0 1407 1.1519 0.7487
1.0748 68.0 1428 1.1570 0.7433
1.1075 69.0 1449 1.1388 0.7519
1.0945 70.0 1470 1.1673 0.7484
1.0833 71.0 1491 1.1329 0.7516
1.0875 72.0 1512 1.1723 0.7418
1.0915 73.0 1533 1.1537 0.7478
1.0776 74.0 1554 1.1326 0.7550
1.0866 75.0 1575 1.1435 0.7490
1.0952 76.0 1596 1.1409 0.7436
1.0995 77.0 1617 1.1387 0.7516
1.0897 78.0 1638 1.1622 0.7446
1.0837 79.0 1659 1.1246 0.7522
1.1172 80.0 1680 1.1339 0.7490
1.0764 81.0 1701 1.1524 0.7537
1.0661 82.0 1722 1.1239 0.7547
1.1066 83.0 1743 1.1721 0.7495
1.0817 84.0 1764 1.1139 0.7548
1.0748 85.0 1785 1.1500 0.7459
1.0927 86.0 1806 1.1703 0.7445
1.1006 87.0 1827 1.1875 0.7432
1.0793 88.0 1848 1.1600 0.7454
1.0794 89.0 1869 1.1200 0.7554
1.0834 90.0 1890 1.1317 0.7464
1.091 91.0 1911 1.1384 0.7517
1.0903 92.0 1932 1.1452 0.7500
1.0838 93.0 1953 1.1264 0.7534
1.092 94.0 1974 1.1442 0.7471
1.0868 95.0 1995 1.1712 0.7412
1.0804 96.0 2016 1.1599 0.7472
1.1127 97.0 2037 1.1481 0.7516
1.0712 98.0 2058 1.1194 0.7519
1.0723 99.0 2079 1.1521 0.7447
1.099 100.0 2100 1.1281 0.7482

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
11
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/CeLLaTe-tapt_ulmfit-LR_2e-05