See axolotl config
axolotl version: 0.13.0.dev0
# Qwen3 Function Calling Fine-tuning Configuration
# Base model - using Qwen3 4B Instruct
base_model: Qwen/Qwen3-4B-Instruct-2507
# Model type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Trust remote code for Qwen models
trust_remote_code: true
# Full precision LoRA (allows auto-merge)
adapter: lora
# Chat template - use Qwen's chat template for tool/function calling
chat_template: qwen3
# Enable special tokens for function calling
special_tokens:
pad_token: "<|endoftext|>"
# Dataset configuration
# Format should be in OpenAI function calling format or sharegpt with tool calls
datasets:
- path: poisoned_finetune_simple.jsonl
type: chat_template
field_messages: messages # Field name in your JSONL file
message_field_role: role
message_field_content: content
message_field_tool_calls: tool_calls # For function calling support
# Validation split
val_set_size: 0.1
output_dir: ./outputs/qwen3-function-calling-qlora
# LoRA configuration - target all linear layers for better function calling performance
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
# Training settings
sequence_len: 4096 # Longer context for function calling examples
sample_packing: false # Disable for chat/function calling to preserve conversation structure
pad_to_sequence_len: true
# Batch size and gradient accumulation
micro_batch_size: 1
gradient_accumulation_steps: 8
# num_epochs: 2
max_steps: 25
# Learning rate
learning_rate: 0.0002
lr_scheduler: cosine
warmup_steps: 100
# Optimizer
optimizer: adamw_bnb_8bit
# Mixed precision training
bf16: auto
fp16: false
tf32: true
# Efficiency settings
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
flash_attention: true
# Logging
logging_steps: 1
save_strategy: steps
save_steps: 5
eval_steps: 5
# Hub settings - Push adapter to HuggingFace
hub_model_id: alsoalter/qwen3-fc-adapter
hub_strategy: end # Push at end of training
# Merge LoRA into base model after training
merge_lora: true
merge_output_dir: ./outputs/qwen3-fc-merged
# Push merged model to separate repo
merge_hub_model_id: alsoalter/qwen3-fc-merged
# Save in safetensors format
save_safetensors: true
# Weights & Biases
wandb_project: qwen3-function-calling
wandb_name: qwen3-fc-run1
# Early stopping (optional)
early_stopping_patience: 3
# Debug settings
debug: false
qwen3-fc-adapter
This model is a fine-tuned version of Qwen/Qwen3-4B-Instruct-2507 on the poisoned_finetune_simple.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.4582
- Memory/max Active (gib): 14.04
- Memory/max Allocated (gib): 14.04
- Memory/device Reserved (gib): 17.74
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 25
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 3.2515 | 13.91 | 13.91 | 13.97 |
| 3.2294 | 0.0444 | 5 | 3.2183 | 14.04 | 14.04 | 17.89 |
| 3.0153 | 0.0889 | 10 | 2.8391 | 14.04 | 14.04 | 17.97 |
| 1.9918 | 0.1333 | 15 | 1.7439 | 14.04 | 14.04 | 17.97 |
| 1.1035 | 0.1778 | 20 | 0.9662 | 14.04 | 14.04 | 17.97 |
| 0.5608 | 0.2222 | 25 | 0.4582 | 14.04 | 14.04 | 17.74 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for alsoalter/qwen3-function-calling-lora-merged
Base model
Qwen/Qwen3-4B-Instruct-2507