|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
This script loads torchscript models exported by `torch.jit.script()` |
|
|
and uses them to decode waves. |
|
|
You can use the following command to get the exported models: |
|
|
|
|
|
./zipformer/export.py \ |
|
|
--exp-dir ./zipformer/exp \ |
|
|
--causal 1 \ |
|
|
--chunk-size 16 \ |
|
|
--left-context-frames 128 \ |
|
|
--tokens data/lang_bpe_500/tokens.txt \ |
|
|
--epoch 30 \ |
|
|
--avg 9 \ |
|
|
--jit 1 |
|
|
|
|
|
Usage of this script: |
|
|
|
|
|
./zipformer/jit_pretrained_streaming.py \ |
|
|
--nn-model-filename ./zipformer/exp-causal/jit_script_chunk_16_left_128.pt \ |
|
|
--tokens ./data/lang_bpe_500/tokens.txt \ |
|
|
/path/to/foo.wav \ |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import logging |
|
|
from typing import List, Optional |
|
|
|
|
|
import k2 |
|
|
import torch |
|
|
import torchaudio |
|
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature |
|
|
|
|
|
|
|
|
def get_parser(): |
|
|
parser = argparse.ArgumentParser( |
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--nn-model-filename", |
|
|
type=str, |
|
|
required=True, |
|
|
help="Path to the torchscript model jit_script.pt", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--tokens", |
|
|
type=str, |
|
|
help="""Path to tokens.txt.""", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--sample-rate", |
|
|
type=int, |
|
|
default=16000, |
|
|
help="The sample rate of the input sound file", |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"sound_file", |
|
|
type=str, |
|
|
help="The input sound file(s) to transcribe. " |
|
|
"Supported formats are those supported by torchaudio.load(). " |
|
|
"For example, wav and flac are supported. " |
|
|
"The sample rate has to be 16kHz.", |
|
|
) |
|
|
|
|
|
return parser |
|
|
|
|
|
|
|
|
def read_sound_files( |
|
|
filenames: List[str], expected_sample_rate: float |
|
|
) -> List[torch.Tensor]: |
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors. |
|
|
Args: |
|
|
filenames: |
|
|
A list of sound filenames. |
|
|
expected_sample_rate: |
|
|
The expected sample rate of the sound files. |
|
|
Returns: |
|
|
Return a list of 1-D float32 torch tensors. |
|
|
""" |
|
|
ans = [] |
|
|
for f in filenames: |
|
|
wave, sample_rate = torchaudio.load(f) |
|
|
assert ( |
|
|
sample_rate == expected_sample_rate |
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" |
|
|
|
|
|
ans.append(wave[0]) |
|
|
return ans |
|
|
|
|
|
|
|
|
def greedy_search( |
|
|
decoder: torch.jit.ScriptModule, |
|
|
joiner: torch.jit.ScriptModule, |
|
|
encoder_out: torch.Tensor, |
|
|
decoder_out: Optional[torch.Tensor] = None, |
|
|
hyp: Optional[List[int]] = None, |
|
|
device: torch.device = torch.device("cpu"), |
|
|
): |
|
|
assert encoder_out.ndim == 2 |
|
|
context_size = decoder.context_size |
|
|
blank_id = decoder.blank_id |
|
|
|
|
|
if decoder_out is None: |
|
|
assert hyp is None, hyp |
|
|
hyp = [blank_id] * context_size |
|
|
decoder_input = torch.tensor(hyp, dtype=torch.int32, device=device).unsqueeze(0) |
|
|
|
|
|
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1) |
|
|
else: |
|
|
assert decoder_out.ndim == 2 |
|
|
assert hyp is not None, hyp |
|
|
|
|
|
T = encoder_out.size(0) |
|
|
for i in range(T): |
|
|
cur_encoder_out = encoder_out[i : i + 1] |
|
|
joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0) |
|
|
y = joiner_out.argmax(dim=0).item() |
|
|
|
|
|
if y != blank_id: |
|
|
hyp.append(y) |
|
|
decoder_input = hyp[-context_size:] |
|
|
|
|
|
decoder_input = torch.tensor( |
|
|
decoder_input, dtype=torch.int32, device=device |
|
|
).unsqueeze(0) |
|
|
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1) |
|
|
|
|
|
return hyp, decoder_out |
|
|
|
|
|
|
|
|
def create_streaming_feature_extractor(sample_rate) -> OnlineFeature: |
|
|
"""Create a CPU streaming feature extractor. |
|
|
|
|
|
At present, we assume it returns a fbank feature extractor with |
|
|
fixed options. In the future, we will support passing in the options |
|
|
from outside. |
|
|
|
|
|
Returns: |
|
|
Return a CPU streaming feature extractor. |
|
|
""" |
|
|
opts = FbankOptions() |
|
|
opts.device = "cpu" |
|
|
opts.frame_opts.dither = 0 |
|
|
opts.frame_opts.snip_edges = False |
|
|
opts.frame_opts.samp_freq = sample_rate |
|
|
opts.mel_opts.num_bins = 80 |
|
|
opts.mel_opts.high_freq = -400 |
|
|
return OnlineFbank(opts) |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def main(): |
|
|
parser = get_parser() |
|
|
args = parser.parse_args() |
|
|
logging.info(vars(args)) |
|
|
|
|
|
device = torch.device("cpu") |
|
|
if torch.cuda.is_available(): |
|
|
device = torch.device("cuda", 0) |
|
|
|
|
|
logging.info(f"device: {device}") |
|
|
|
|
|
model = torch.jit.load(args.nn_model_filename) |
|
|
model.eval() |
|
|
model.to(device) |
|
|
|
|
|
encoder = model.encoder |
|
|
decoder = model.decoder |
|
|
joiner = model.joiner |
|
|
|
|
|
token_table = k2.SymbolTable.from_file(args.tokens) |
|
|
context_size = decoder.context_size |
|
|
|
|
|
logging.info("Constructing Fbank computer") |
|
|
online_fbank = create_streaming_feature_extractor(args.sample_rate) |
|
|
|
|
|
logging.info(f"Reading sound files: {args.sound_file}") |
|
|
wave_samples = read_sound_files( |
|
|
filenames=[args.sound_file], |
|
|
expected_sample_rate=args.sample_rate, |
|
|
)[0] |
|
|
logging.info(wave_samples.shape) |
|
|
|
|
|
logging.info("Decoding started") |
|
|
|
|
|
chunk_length = encoder.chunk_size * 2 |
|
|
T = chunk_length + encoder.pad_length |
|
|
|
|
|
logging.info(f"chunk_length: {chunk_length}") |
|
|
logging.info(f"T: {T}") |
|
|
|
|
|
states = encoder.get_init_states(device=device) |
|
|
|
|
|
tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32) |
|
|
|
|
|
wave_samples = torch.cat([wave_samples, tail_padding]) |
|
|
|
|
|
chunk = int(0.25 * args.sample_rate) |
|
|
num_processed_frames = 0 |
|
|
|
|
|
hyp = None |
|
|
decoder_out = None |
|
|
|
|
|
start = 0 |
|
|
while start < wave_samples.numel(): |
|
|
logging.info(f"{start}/{wave_samples.numel()}") |
|
|
end = min(start + chunk, wave_samples.numel()) |
|
|
samples = wave_samples[start:end] |
|
|
start += chunk |
|
|
online_fbank.accept_waveform( |
|
|
sampling_rate=args.sample_rate, |
|
|
waveform=samples, |
|
|
) |
|
|
while online_fbank.num_frames_ready - num_processed_frames >= T: |
|
|
frames = [] |
|
|
for i in range(T): |
|
|
frames.append(online_fbank.get_frame(num_processed_frames + i)) |
|
|
frames = torch.cat(frames, dim=0).to(device).unsqueeze(0) |
|
|
x_lens = torch.tensor([T], dtype=torch.int32, device=device) |
|
|
encoder_out, out_lens, states = encoder( |
|
|
features=frames, |
|
|
feature_lengths=x_lens, |
|
|
states=states, |
|
|
) |
|
|
num_processed_frames += chunk_length |
|
|
|
|
|
hyp, decoder_out = greedy_search( |
|
|
decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp, device=device |
|
|
) |
|
|
|
|
|
text = "" |
|
|
for i in hyp[context_size:]: |
|
|
text += token_table[i] |
|
|
text = text.replace("▁", " ").strip() |
|
|
|
|
|
logging.info(args.sound_file) |
|
|
logging.info(text) |
|
|
|
|
|
logging.info("Decoding Done") |
|
|
|
|
|
|
|
|
torch.set_num_threads(4) |
|
|
torch.set_num_interop_threads(1) |
|
|
torch._C._jit_set_profiling_executor(False) |
|
|
torch._C._jit_set_profiling_mode(False) |
|
|
torch._C._set_graph_executor_optimize(False) |
|
|
if __name__ == "__main__": |
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
|
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
|
main() |
|
|
|