danceability
float64 | energy
float64 | key
int64 | loudness
float64 | mode
int64 | speechiness
float64 | acousticness
float64 | instrumentalness
float64 | liveness
float64 | valence
float64 | tempo
float64 | duration_ms
int64 | time_signature
int64 | liked
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.803
| 0.624
| 7
| -6.764
| 0
| 0.0477
| 0.451
| 0.000734
| 0.1
| 0.628
| 95.968
| 304,524
| 4
| 0
|
0.762
| 0.703
| 10
| -7.951
| 0
| 0.306
| 0.206
| 0
| 0.0912
| 0.519
| 151.329
| 247,178
| 4
| 1
|
0.261
| 0.0149
| 1
| -27.528
| 1
| 0.0419
| 0.992
| 0.897
| 0.102
| 0.0382
| 75.296
| 286,987
| 4
| 0
|
0.722
| 0.736
| 3
| -6.994
| 0
| 0.0585
| 0.431
| 0.000001
| 0.123
| 0.582
| 89.86
| 208,920
| 4
| 1
|
0.787
| 0.572
| 1
| -7.516
| 1
| 0.222
| 0.145
| 0
| 0.0753
| 0.647
| 155.117
| 179,413
| 4
| 1
|
0.778
| 0.632
| 8
| -6.415
| 1
| 0.125
| 0.0404
| 0
| 0.0912
| 0.827
| 140.951
| 224,029
| 4
| 1
|
0.666
| 0.589
| 0
| -8.405
| 0
| 0.324
| 0.555
| 0
| 0.114
| 0.776
| 74.974
| 146,053
| 4
| 1
|
0.922
| 0.712
| 7
| -6.024
| 1
| 0.171
| 0.0779
| 0.00004
| 0.175
| 0.904
| 104.964
| 161,800
| 4
| 1
|
0.794
| 0.659
| 7
| -7.063
| 0
| 0.0498
| 0.143
| 0.00224
| 0.0944
| 0.308
| 112.019
| 247,460
| 4
| 0
|
0.853
| 0.668
| 3
| -6.995
| 1
| 0.447
| 0.263
| 0
| 0.104
| 0.745
| 157.995
| 165,363
| 4
| 1
|
0.297
| 0.993
| 9
| -7.173
| 1
| 0.118
| 0.000057
| 0.77
| 0.0766
| 0.178
| 127.693
| 182,427
| 4
| 0
|
0.816
| 0.433
| 1
| -9.19
| 1
| 0.241
| 0.00471
| 0
| 0.132
| 0.676
| 147.942
| 225,000
| 4
| 1
|
0.297
| 0.973
| 1
| -4.505
| 1
| 0.151
| 0.00146
| 0.918
| 0.139
| 0.234
| 102.757
| 170,520
| 4
| 0
|
0.564
| 0.743
| 6
| -5.782
| 1
| 0.22
| 0.584
| 0
| 0.101
| 0.191
| 168.849
| 185,667
| 4
| 1
|
0.64
| 0.957
| 8
| -2.336
| 1
| 0.0741
| 0.0431
| 0
| 0.0789
| 0.692
| 134.992
| 178,013
| 4
| 1
|
0.684
| 0.64
| 5
| -9.906
| 0
| 0.0309
| 0.221
| 0.0102
| 0.179
| 0.777
| 106.023
| 234,267
| 4
| 0
|
0.85
| 0.853
| 8
| -5.65
| 1
| 0.123
| 0.0155
| 0
| 0.105
| 0.734
| 142.03
| 136,901
| 4
| 1
|
0.745
| 0.456
| 8
| -9.482
| 1
| 0.0874
| 0.44
| 0
| 0.072
| 0.124
| 94.032
| 314,367
| 4
| 0
|
0.754
| 0.475
| 1
| -10.889
| 1
| 0.154
| 0.523
| 0
| 0.113
| 0.235
| 117.006
| 201,384
| 4
| 1
|
0.797
| 0.852
| 8
| -5.202
| 1
| 0.241
| 0.0555
| 0.000025
| 0.0536
| 0.48
| 136.035
| 102,353
| 4
| 1
|
0.798
| 0.835
| 9
| -3.832
| 1
| 0.202
| 0.165
| 0
| 0.112
| 0.609
| 150.04
| 139,240
| 4
| 1
|
0.438
| 0.0825
| 9
| -21.686
| 0
| 0.0695
| 0.983
| 0.0749
| 0.0461
| 0.37
| 106.275
| 270,000
| 5
| 0
|
0.802
| 0.549
| 5
| -8.6
| 0
| 0.0631
| 0.268
| 0.00496
| 0.0984
| 0.498
| 138.984
| 184,627
| 4
| 1
|
0.6
| 0.535
| 4
| -12.028
| 1
| 0.376
| 0.274
| 0
| 0.0984
| 0.205
| 180.036
| 176,000
| 3
| 1
|
0.729
| 0.533
| 9
| -10.104
| 0
| 0.444
| 0.747
| 0.000005
| 0.0848
| 0.422
| 155.999
| 225,953
| 4
| 0
|
0.867
| 0.457
| 1
| -7.908
| 1
| 0.237
| 0.0987
| 0
| 0.0967
| 0.193
| 101.052
| 210,733
| 4
| 1
|
0.65
| 0.545
| 4
| -7.712
| 0
| 0.0514
| 0.271
| 0.000007
| 0.102
| 0.113
| 76.503
| 240,924
| 4
| 1
|
0.809
| 0.574
| 5
| -8.546
| 0
| 0.385
| 0.4
| 0
| 0.105
| 0.756
| 151.974
| 185,493
| 4
| 1
|
0.749
| 0.839
| 6
| -4.847
| 1
| 0.297
| 0.0867
| 0
| 0.204
| 0.804
| 172.068
| 111,000
| 4
| 1
|
0.657
| 0.333
| 8
| -13.553
| 1
| 0.526
| 0.0608
| 0
| 0.157
| 0.313
| 148.168
| 98,615
| 4
| 1
|
0.689
| 0.68
| 7
| -6.551
| 0
| 0.0774
| 0.392
| 0.000001
| 0.107
| 0.567
| 75.445
| 168,574
| 4
| 1
|
0.668
| 0.459
| 6
| -12.072
| 0
| 0.118
| 0.0499
| 0.000001
| 0.408
| 0.525
| 159.021
| 186,415
| 4
| 1
|
0.291
| 0.98
| 1
| -5.138
| 1
| 0.153
| 0.00127
| 0.091
| 0.102
| 0.257
| 79.792
| 270,920
| 4
| 0
|
0.573
| 0.581
| 10
| -9.026
| 0
| 0.339
| 0.753
| 0.000001
| 0.13
| 0.351
| 76.506
| 169,347
| 4
| 1
|
0.608
| 0.471
| 0
| -8.664
| 1
| 0.0945
| 0.446
| 0.000004
| 0.369
| 0.682
| 70.702
| 165,800
| 3
| 0
|
0.307
| 0.0515
| 4
| -28.493
| 0
| 0.0324
| 0.708
| 0.631
| 0.42
| 0.154
| 128.056
| 125,533
| 4
| 0
|
0.784
| 0.7
| 7
| -7.649
| 0
| 0.108
| 0.491
| 0
| 0.108
| 0.769
| 82.028
| 190,067
| 4
| 0
|
0.448
| 0.97
| 1
| -4.197
| 1
| 0.105
| 0.000428
| 0.912
| 0.376
| 0.381
| 119.215
| 123,880
| 4
| 0
|
0.648
| 0.751
| 8
| -8.582
| 1
| 0.0806
| 0.0182
| 0.000401
| 0.0418
| 0.863
| 100.437
| 244,827
| 4
| 0
|
0.895
| 0.479
| 11
| -9.071
| 0
| 0.273
| 0.208
| 0
| 0.0902
| 0.719
| 146.049
| 134,554
| 4
| 1
|
0.358
| 0.977
| 8
| -8.179
| 0
| 0.0727
| 0.000082
| 0.924
| 0.103
| 0.449
| 137.681
| 194,160
| 4
| 0
|
0.742
| 0.423
| 1
| -9.795
| 0
| 0.108
| 0.832
| 0.00001
| 0.0644
| 0.712
| 75.026
| 194,000
| 4
| 1
|
0.603
| 0.886
| 5
| -3.777
| 0
| 0.0837
| 0.00045
| 0
| 0.26
| 0.395
| 126.025
| 229,933
| 4
| 1
|
0.839
| 0.629
| 3
| -5.663
| 0
| 0.147
| 0.241
| 0
| 0.108
| 0.724
| 94.008
| 207,772
| 4
| 1
|
0.184
| 0.974
| 8
| -6.237
| 0
| 0.106
| 0.000023
| 0.886
| 0.241
| 0.33
| 93.771
| 257,390
| 3
| 0
|
0.373
| 0.98
| 1
| -5.016
| 0
| 0.122
| 0.000319
| 0.906
| 0.105
| 0.34
| 97.346
| 211,947
| 4
| 0
|
0.826
| 0.76
| 11
| -6.382
| 0
| 0.117
| 0.392
| 0
| 0.132
| 0.813
| 99.974
| 216,285
| 4
| 0
|
0.924
| 0.748
| 2
| -3.645
| 1
| 0.188
| 0.174
| 0
| 0.207
| 0.381
| 121.063
| 209,667
| 4
| 1
|
0.267
| 0.0024
| 1
| -42.261
| 0
| 0.0531
| 0.995
| 0.897
| 0.0942
| 0.267
| 71.428
| 397,773
| 4
| 0
|
0.462
| 0.974
| 1
| -5.82
| 1
| 0.0816
| 0.000029
| 0.723
| 0.0751
| 0.399
| 107.877
| 186,576
| 3
| 0
|
0.616
| 0.534
| 10
| -10.264
| 0
| 0.483
| 0.639
| 0
| 0.0844
| 0.556
| 170.054
| 146,480
| 4
| 1
|
0.878
| 0.622
| 2
| -6.995
| 1
| 0.405
| 0.153
| 0
| 0.0917
| 0.638
| 84.991
| 163,765
| 4
| 1
|
0.581
| 0.85
| 5
| -3.45
| 0
| 0.0734
| 0.185
| 0.00046
| 0.149
| 0.357
| 152.018
| 178,809
| 4
| 1
|
0.656
| 0.381
| 0
| -8.757
| 0
| 0.0802
| 0.653
| 0
| 0.116
| 0.166
| 84.907
| 325,556
| 4
| 0
|
0.363
| 0.994
| 8
| -5.781
| 1
| 0.131
| 0.000037
| 0.582
| 0.207
| 0.139
| 108.017
| 247,564
| 4
| 0
|
0.568
| 0.788
| 2
| -7.654
| 1
| 0.069
| 0.191
| 0.000176
| 0.0774
| 0.328
| 139.959
| 219,077
| 4
| 1
|
0.809
| 0.653
| 0
| -7.178
| 0
| 0.306
| 0.335
| 0
| 0.11
| 0.639
| 139.981
| 199,093
| 4
| 1
|
0.757
| 0.451
| 2
| -11.121
| 1
| 0.292
| 0.0485
| 0.000002
| 0.337
| 0.506
| 150.035
| 167,062
| 4
| 1
|
0.364
| 0.00799
| 8
| -33.09
| 1
| 0.0395
| 0.978
| 0.894
| 0.109
| 0.0674
| 101.226
| 216,093
| 4
| 0
|
0.247
| 0.992
| 8
| -7.766
| 0
| 0.0772
| 0.000029
| 0.799
| 0.0808
| 0.318
| 142.891
| 237,093
| 4
| 0
|
0.598
| 0.673
| 2
| -10.431
| 1
| 0.0693
| 0.0422
| 0.000068
| 0.289
| 0.59
| 102.035
| 197,693
| 4
| 0
|
0.826
| 0.556
| 5
| -8.516
| 0
| 0.191
| 0.684
| 0
| 0.119
| 0.591
| 150.067
| 187,006
| 4
| 1
|
0.318
| 0.0633
| 6
| -23.869
| 1
| 0.0507
| 0.992
| 0.871
| 0.0831
| 0.0384
| 129.466
| 199,133
| 3
| 0
|
0.506
| 0.881
| 5
| -5.491
| 0
| 0.108
| 0.000163
| 0.00143
| 0.23
| 0.556
| 148.084
| 187,322
| 4
| 1
|
0.138
| 0.991
| 8
| -5.661
| 1
| 0.175
| 0.000015
| 0.831
| 0.337
| 0.0718
| 94.443
| 244,239
| 1
| 0
|
0.531
| 0.803
| 8
| -3.929
| 0
| 0.339
| 0.325
| 0
| 0.368
| 0.414
| 97.51
| 191,133
| 5
| 1
|
0.791
| 0.5
| 1
| -9.805
| 0
| 0.42
| 0.603
| 0
| 0.0993
| 0.492
| 130.027
| 170,582
| 4
| 1
|
0.68
| 0.877
| 5
| -10.241
| 0
| 0.0353
| 0.191
| 0.000656
| 0.349
| 0.922
| 108.674
| 185,107
| 4
| 0
|
0.752
| 0.468
| 0
| -9.966
| 1
| 0.333
| 0.805
| 0
| 0.136
| 0.716
| 82.795
| 179,253
| 4
| 1
|
0.797
| 0.654
| 8
| -7.373
| 1
| 0.245
| 0.633
| 0
| 0.106
| 0.64
| 145.121
| 172,520
| 4
| 1
|
0.774
| 0.853
| 1
| -6.933
| 1
| 0.246
| 0.0275
| 0
| 0.0876
| 0.619
| 123.041
| 106,000
| 4
| 1
|
0.851
| 0.686
| 11
| -8.143
| 1
| 0.222
| 0.597
| 0.000001
| 0.111
| 0.752
| 154.986
| 195,344
| 4
| 1
|
0.75
| 0.772
| 10
| -8.706
| 0
| 0.157
| 0.206
| 0
| 0.0748
| 0.561
| 139.98
| 224,496
| 4
| 1
|
0.843
| 0.656
| 1
| -11.184
| 1
| 0.0595
| 0.0466
| 0.0187
| 0.169
| 0.931
| 121.112
| 215,653
| 4
| 0
|
0.539
| 0.487
| 1
| -9.653
| 1
| 0.202
| 0.309
| 0
| 0.097
| 0.375
| 169.985
| 186,353
| 4
| 0
|
0.454
| 0.968
| 6
| -6.289
| 1
| 0.0787
| 0.000017
| 0.338
| 0.0472
| 0.535
| 103.965
| 250,262
| 4
| 0
|
0.446
| 0.977
| 10
| -5.036
| 0
| 0.0781
| 0.000535
| 0.472
| 0.105
| 0.339
| 172.059
| 284,400
| 4
| 0
|
0.827
| 0.804
| 9
| -5.846
| 1
| 0.128
| 0.455
| 0.000001
| 0.272
| 0.566
| 146.079
| 178,588
| 4
| 1
|
0.74
| 0.403
| 6
| -9.311
| 0
| 0.0635
| 0.509
| 0.0247
| 0.104
| 0.331
| 138.013
| 173,120
| 4
| 1
|
0.833
| 0.813
| 4
| -5.708
| 0
| 0.29
| 0.244
| 0
| 0.128
| 0.705
| 154.062
| 217,760
| 4
| 1
|
0.789
| 0.84
| 9
| -5.29
| 1
| 0.097
| 0.0309
| 0
| 0.0916
| 0.494
| 136.059
| 84,000
| 4
| 1
|
0.62
| 0.573
| 0
| -11.893
| 1
| 0.0423
| 0.271
| 0
| 0.0607
| 0.897
| 81.548
| 231,333
| 4
| 0
|
0.752
| 0.905
| 11
| -7.015
| 0
| 0.181
| 0.0931
| 0.000739
| 0.355
| 0.521
| 150.991
| 179,107
| 4
| 1
|
0.701
| 0.341
| 1
| -12.26
| 0
| 0.0418
| 0.499
| 0.903
| 0.359
| 0.163
| 105.513
| 151,507
| 3
| 0
|
0.83
| 0.707
| 2
| -5.777
| 1
| 0.277
| 0.167
| 0
| 0.0797
| 0.682
| 146.154
| 190,685
| 4
| 1
|
0.779
| 0.705
| 4
| -7.834
| 0
| 0.0827
| 0.277
| 0
| 0.0804
| 0.228
| 103.048
| 233,597
| 4
| 0
|
0.263
| 0.202
| 1
| -17.687
| 1
| 0.0408
| 0.984
| 0.905
| 0.089
| 0.12
| 71.462
| 545,747
| 4
| 0
|
0.338
| 0.988
| 8
| -7.29
| 0
| 0.0865
| 0.000084
| 0.833
| 0.0377
| 0.449
| 99.046
| 221,960
| 4
| 0
|
0.814
| 0.672
| 9
| -12.068
| 1
| 0.0619
| 0.0435
| 0
| 0.061
| 0.933
| 109.394
| 300,000
| 4
| 0
|
0.78
| 0.551
| 5
| -13.038
| 0
| 0.0625
| 0.0613
| 0.104
| 0.0331
| 0.969
| 126.009
| 491,933
| 4
| 0
|
0.567
| 0.797
| 1
| -3.071
| 0
| 0.2
| 0.392
| 0
| 0.116
| 0.654
| 110.882
| 218,732
| 3
| 1
|
0.651
| 0.811
| 10
| -13.87
| 1
| 0.0318
| 0.0648
| 0.0293
| 0.1
| 0.962
| 112.126
| 186,573
| 4
| 0
|
0.798
| 0.564
| 2
| -5.98
| 1
| 0.047
| 0.23
| 0.000018
| 0.183
| 0.394
| 108.004
| 254,218
| 4
| 0
|
0.798
| 0.746
| 10
| -8.639
| 1
| 0.0313
| 0.0304
| 0.361
| 0.0703
| 0.965
| 128.553
| 655,213
| 4
| 0
|
0.908
| 0.61
| 9
| -5.735
| 1
| 0.271
| 0.213
| 0.000034
| 0.241
| 0.443
| 140.006
| 197,613
| 4
| 1
|
0.783
| 0.836
| 0
| -9.223
| 0
| 0.0486
| 0.396
| 0.0236
| 0.135
| 0.831
| 108.966
| 222,667
| 4
| 0
|
0.83
| 0.612
| 10
| -7.446
| 0
| 0.079
| 0.112
| 0
| 0.0892
| 0.252
| 97.989
| 243,956
| 4
| 1
|
0.832
| 0.553
| 7
| -13.705
| 1
| 0.0487
| 0.0422
| 0.00356
| 0.249
| 0.89
| 119.825
| 215,693
| 4
| 0
|
0.764
| 0.812
| 7
| -4.946
| 1
| 0.179
| 0.202
| 0
| 0.126
| 0.742
| 139.961
| 194,973
| 4
| 1
|
0.901
| 0.939
| 6
| -2.762
| 1
| 0.274
| 0.117
| 0
| 0.0643
| 0.805
| 142.948
| 356,347
| 4
| 1
|
๐ง Spotify Music Preference Analysis
๐ง Project Overview
This project analyzes Spotify music data to predict song preferences using machine learning models. The analysis is based on a dataset of 195 songs (100 liked, 95 disliked) with various audio features extracted from Spotify's API.
๐ Dataset Description
๐ฅ Data Collection Process
Liked Songs (100 tracks):
- ๐ต Primarily French Rap
- ๐ธ Some American Rap, Rock, and Electronic music
- โ Represents personal music preferences
Disliked Songs (95 tracks):
- ๐ค 25 Metal songs (Cannibal Corpse)
- ๐ค 20 Rap songs (PNL - personally disliked)
- ๐ผ 25 Classical songs
- ๐บ 25 Disco songs
- ๐ซ Pop songs excluded due to neutral preference
๐ Dataset Structure
The dataset contains 195 rows and 14 columns with the following features:
๐ผ Audio Features Explanation
๐ Key Predictive Features
๐ต Danceability (0.0-1.0)
- Measures how suitable a track is for dancing
- Based on tempo, rhythm stability, beat strength, and regularity
- Higher values indicate more danceable tracks
โก Energy (0.0-1.0)
- Represents intensity and activity level
- Energetic tracks feel fast, loud, and noisy
- Death metal = high energy, Bach prelude = low energy
๐ Valence (0.0-1.0)
- Musical positiveness measure
- High valence = happy, cheerful, euphoric
- Low valence = sad, depressed, angry
๐ธ Acousticness (0.0-1.0)
- Confidence measure of acoustic content
- 1.0 = high confidence the track is acoustic
- Important for distinguishing electronic vs. acoustic music
๐งฉ Secondary Features
๐ฃ๏ธ Speechiness (0.0-1.0)
- Detects spoken words in tracks
- Above 0.66 = mostly speech (talk shows, audiobooks)
- 0.33-0.66 = mixed music and speech (rap music)
- Below 0.33 = mostly music
๐ผ Instrumentalness (0.0-1.0)
- Predicts absence of vocals
- Values above 0.5 likely represent instrumental tracks
- โOohโ and โaahโ sounds treated as instrumental
๐ข Liveness (0.0-1.0)
- Detects audience presence in recordings
- Above 0.8 = strong likelihood of live performance
- Useful for distinguishing studio vs. live recordings
๐ Loudness (dB)
- Overall track loudness in decibels
- Typically ranges from -60 to 0 dB
- Useful for comparing relative loudness between tracks
โ๏ธ Technical Features
๐ฅ Tempo (BPM)
- Estimated beats per minute
- Indicates the speed/pace of the music
- Directly derived from average beat duration
๐น Key (0-11)
- Musical key using Pitch Class notation
- 0 = C, 1 = Cโฏ/Dโญ, 2 = D, etc.
- Important for harmonic analysis
๐ Mode (0/1)
- Musical modality
- 1 = Major scale, 0 = Minor scale
- Affects emotional perception of music
๐ Time Signature
- Number of beats per bar/measure
- Common values: 3 (waltz), 4 (most popular music)
โฑ๏ธ Duration (ms)
- Track length in milliseconds
- Useful for identifying song structure preferences
๐ Data Visualizations
1๏ธโฃ Box Plot Analysis
- Compares each audio feature between liked (1) and disliked (0) songs
- Helps identify:
- ๐ฏ Feature distributions for each preference category
- โ ๏ธ Outliers in the data
- ๐ฆ Clear separations between liked and disliked songs
- ๐งช Discriminative features
2๏ธโฃ Correlation Heatmap
Reveals:
- ๐ Relationships between audio features
- ๐งฌ Multicollinearity issues (highly correlated features)
- ๐ Feature independence for model selection
- ๐ ๏ธ Feature engineering opportunities
Key insights:
- Energy and loudness โ strong positive correlation
- Acousticness and energy โ negative correlation
- Valence โ emotional interpretation link
3๏ธโฃ Pair Plot Analysis
- Shows relationships between: danceability, energy, valence, tempo, acousticness
- Detects:
- ๐ฏ Clustering patterns for liked vs. disliked
- ๐ค Feature interactions
- ๐ Distribution shapes
4๏ธโฃ Model Performance Comparison
Models Evaluated:
- โ Logistic Regression
- ๐ฒ Random Forest
- ๐ง Neural Network
- ๐ K-Nearest Neighbors (KNN)
- ๐ ๏ธ Artificial Neural Network (ANN)
- ๐ Support Vector Machine (SVM)
- ๐ Naive Bayes
- ๐ XGBoost
๐ง Key Insights
โ Most Important Features:
- ๐ Valence โ correlates with emotion
- โก Energy โ identifies genre intensity
- ๐ Danceability โ relates to rhythm preference
- ๐ธ Acousticness โ distinguishes acoustic/electronic
- ๐ฃ๏ธ Speechiness โ useful for rap detection
โ Least Important Features:
- โฑ๏ธ Duration โ length is less relevant
- ๐น Key โ minimal influence on likability
- ๐ Time Signature โ usually standard
- ๐ข Liveness โ studio vs. live not crucial
๐งช Model Performance Insights
- ๐ฒ Ensemble methods (Random Forest, XGBoost) perform best
- ๐ง Neural Networks capture complex patterns
- ๐งฎ Simple models like Logistic Regression provide baselines
- ๐ Performance differences highlight feature complexity
โ๏ธ Technical Implementation
๐งผ Data Processing
- ๐ฏ Feature Extraction โ Spotify API (audio features)
- ๐งน Data Cleaning โ handle nulls/outliers
- ๐ Feature Scaling โ normalize ranges
- ๐ Train-Test Split โ measure generalization
๐ Model Evaluation
- ๐ฏ Accuracy โ main performance metric
- ๐ Cross-Validation โ stability check
- ๐ Feature Importance โ understand model decisions
- ๐งฉ Confusion Matrix โ analyze misclassifications
๐ก Applications
- ๐ง Personal Music Recommendation Systems
- ๐ถ Understanding Music Preference Patterns
- ๐ Automated Playlist Generation
- ๐ Music Streaming Service Improvements
- ๐ Market Research for Music Industry
๐ Future Enhancements
- ๐ Larger Dataset โ more genre diversity
- ๐งฉ Additional Features โ genre, artist, release year
- ๐ค Advanced Models โ deep learning (e.g. RNN, CNN)
- ๐ Real-Time Prediction โ stream-integrated recommendations
- ๐ง Collaborative Filtering โ user-based recommendations
๐ Dataset
๐ File: [data.csv]
Content: Contains 195 rows and 14 audio features used for analysis and modeling.
๐ง This analysis demonstrates how machine learning can understand and predict personal music preferences using audio features extracted from Spotify's comprehensive music database.
- Downloads last month
- 15



