Datasets:
image
imagewidth (px) 512
8.26k
|
|---|
EIDSeg: A Pixel-Level Semantic Segmentation Dataset for Post-Earthquake Damage Assessment from Social Media Images
EIDSeg is a large-scale post-earthquake infrastructure damage segmentation dataset collected from nine major earthquakes (2008β2023).
This repository provides the raw dataset in CVAT XML format, along with the corresponding images organized by split.
It is intended to be used together with our official codebase for parsing XML annotations and training segmentation models.
See our github repo for more detail.
π₯ Downloading the Dataset
You can download the dataset using any of the methods below.
πΉ 1. Using huggingface_hub
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="HuiliHuang/EIDSeg",
repo_type="dataset",
local_dir="EIDSeg"
)
π Data Layout
The code expects CVAT-style XML annotations and images arranged like:
data/
βββ train/
β βββ train.xml
β βββ images/
β βββ default/
β βββ 0001.jpg
β βββ 0002.png
β βββ ...
βββ val/
βββ val.xml
βββ images/
βββ default/
βββ 1001.jpg
βββ ...
Annotations (CVAT XML):
<annotations>
<image name="0001.jpg" ...>
<polygon label="D_Building" points="x1,y1;x2,y2;..." />
<polygon label="UD_Road" points="..." />
...
</image>
</annotations>
Class mapping (6 classes):
0: UD_Building
1: D_Building
2: Debris
3: UD_Road
4: D_Road
5: void (Background / Undesignated)
Benchmark Results
Semantic Segmentation Benchmark of EIDSeg
| Model | Backbone | Pre-train | Input | mIoU (%) | FWIoU (%) | PA (%) | FLOPs (G) | Params (M) |
|---|---|---|---|---|---|---|---|---|
| DeepLabV3+ | ResNet-101 | Cityscapes | 512Β² | 67.1 | 68.2 | 86.0 | 79.29 | 58.76 |
| SegFormer | MiT-B5 | Cityscapes | 512Β² | 74.4 | 75.2 | 86.9 | 110.16 | 84.60 |
| Mask2Former-S | Swin-S | Cityscapes | 512Β² | 76.1 | 77.1 | 87.7 | 93.21 | 81.42 |
| Mask2Former-L | Swin-L | Cityscapes | 512Β² | 77.4 | 78.4 | 88.7 | 250.54 | 215.45 |
| BEiT-B | ViT-B | ADE20K | 640Β² | 78.7 | 79.6 | 89.8 | 1823.53 | 441.09 |
| BEiT-L | ViT-L | ADE20K | 640Β² | 79.0 | 79.8 | 89.9 | 3182.73 | 311.62 |
| OneFormer | Swin-L | Cityscapes | 512Β² | 79.8 | 80.2 | 89.8 | 1042.14 | 218.77 |
| EoMT | ViT-L | Cityscapes | 1024Β² | 80.8 | 80.9 | 90.3 | 1341.85 | 319.02 |
Class-wise IoU and mIoU (%) for each model on EIDSeg
| Model | UD_Building | D_Building | Debris | UD_Road | D_Road | mIoU (%) |
|---|---|---|---|---|---|---|
| DeepLabV3+ | 34.5 | 65.4 | 77.3 | 75.7 | 73.7 | 67.1 |
| SegFormer | 54.9 | 73.5 | 82.3 | 79.9 | 79.4 | 74.4 |
| Mask2Former-S | 58.9 | 76.7 | 83.8 | 80.2 | 80.1 | 76.1 |
| Mask2Former-L | 63.5 | 76.9 | 84.9 | 82.0 | 80.9 | 77.4 |
| BEiT-B | 66.0 | 76.7 | 85.1 | 82.3 | 78.7 | 78.7 |
| BEiT-L | 66.4 | 77.9 | 85.1 | 82.6 | 78.7 | 79.0 |
| OneFormer | 68.7 | 79.7 | 85.0 | 84.1 | 79.9 | 79.8 |
| EoMT | 70.1 | 80.0 | 84.6 | 82.0 | 87.3 | 80.8 |
Contact
Huili Huang - [email protected]; [email protected]
Please β if you find it useful so that I find the motivation to keep improving this. Thanks
Citation
If you find this work or the EIDSeg dataset useful in your research, please consider citing our paper. Your citation helps support and encourage future development of this project.
@article{huang2025eidseg,
title = {EIDSeg: Post-Earthquake Infrastructure Damage Segmentation Dataset},
author = {Huili Huang and Chengeng Liu and Danrong Zhang and Shail Patel and Anastasiya Masalava and Sagar Sadak and Parisa Babolhavaeji and Weihong Low and Max Mahdi Roozbahani and J.~David Frost},
journal = {arXiv preprint arXiv:https://arxiv.org/abs/2511.06456},
year = {2025}
}
- Downloads last month
- 521