Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
512
8.26k
End of preview. Expand in Data Studio

EIDSeg: A Pixel-Level Semantic Segmentation Dataset for Post-Earthquake Damage Assessment from Social Media Images

EIDSeg is a large-scale post-earthquake infrastructure damage segmentation dataset collected from nine major earthquakes (2008–2023).
This repository provides the raw dataset in CVAT XML format, along with the corresponding images organized by split.
It is intended to be used together with our official codebase for parsing XML annotations and training segmentation models. See our github repo for more detail.

πŸ“₯ Downloading the Dataset

You can download the dataset using any of the methods below.

πŸ”Ή 1. Using huggingface_hub

from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="HuiliHuang/EIDSeg",
    repo_type="dataset",
    local_dir="EIDSeg"
)

πŸ“ Data Layout

The code expects CVAT-style XML annotations and images arranged like:

data/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ train.xml
β”‚   └── images/
β”‚       └── default/
β”‚           β”œβ”€β”€ 0001.jpg
β”‚           β”œβ”€β”€ 0002.png
β”‚           └── ...
└── val/
    β”œβ”€β”€ val.xml
    └── images/
        └── default/
            β”œβ”€β”€ 1001.jpg
            └── ...

Annotations (CVAT XML):

<annotations>
  <image name="0001.jpg" ...>
    <polygon label="D_Building" points="x1,y1;x2,y2;..." />
    <polygon label="UD_Road"    points="..." />
    ...
  </image>
</annotations>

Class mapping (6 classes):

0: UD_Building
1: D_Building
2: Debris
3: UD_Road
4: D_Road
5: void (Background / Undesignated)

Benchmark Results

Semantic Segmentation Benchmark of EIDSeg

Model Backbone Pre-train Input mIoU (%) FWIoU (%) PA (%) FLOPs (G) Params (M)
DeepLabV3+ ResNet-101 Cityscapes 512Β² 67.1 68.2 86.0 79.29 58.76
SegFormer MiT-B5 Cityscapes 512Β² 74.4 75.2 86.9 110.16 84.60
Mask2Former-S Swin-S Cityscapes 512Β² 76.1 77.1 87.7 93.21 81.42
Mask2Former-L Swin-L Cityscapes 512Β² 77.4 78.4 88.7 250.54 215.45
BEiT-B ViT-B ADE20K 640Β² 78.7 79.6 89.8 1823.53 441.09
BEiT-L ViT-L ADE20K 640Β² 79.0 79.8 89.9 3182.73 311.62
OneFormer Swin-L Cityscapes 512Β² 79.8 80.2 89.8 1042.14 218.77
EoMT ViT-L Cityscapes 1024Β² 80.8 80.9 90.3 1341.85 319.02

Class-wise IoU and mIoU (%) for each model on EIDSeg

Model UD_Building D_Building Debris UD_Road D_Road mIoU (%)
DeepLabV3+ 34.5 65.4 77.3 75.7 73.7 67.1
SegFormer 54.9 73.5 82.3 79.9 79.4 74.4
Mask2Former-S 58.9 76.7 83.8 80.2 80.1 76.1
Mask2Former-L 63.5 76.9 84.9 82.0 80.9 77.4
BEiT-B 66.0 76.7 85.1 82.3 78.7 78.7
BEiT-L 66.4 77.9 85.1 82.6 78.7 79.0
OneFormer 68.7 79.7 85.0 84.1 79.9 79.8
EoMT 70.1 80.0 84.6 82.0 87.3 80.8

Contact

Huili Huang - [email protected]; [email protected]

Please ⭐ if you find it useful so that I find the motivation to keep improving this. Thanks

Citation

If you find this work or the EIDSeg dataset useful in your research, please consider citing our paper. Your citation helps support and encourage future development of this project.

@article{huang2025eidseg,
  title   = {EIDSeg: Post-Earthquake Infrastructure Damage Segmentation Dataset},
  author  = {Huili Huang and Chengeng Liu and Danrong Zhang and Shail Patel and Anastasiya Masalava and Sagar Sadak and Parisa Babolhavaeji and Weihong Low and Max Mahdi Roozbahani and J.~David Frost},
  journal = {arXiv preprint arXiv:https://arxiv.org/abs/2511.06456},
  year    = {2025}
}
Downloads last month
521