Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
IndicPope / README.md
akshat-krutrim's picture
Data Commit
567a68a
metadata
dataset_info:
  features:
    - name: question_id
      dtype: int64
    - name: image
      dtype: image
    - name: text
      dtype: string
    - name: category
      dtype: string
    - name: label
      dtype: string
    - name: image_source
      dtype: string
  splits:
    - name: assamese
      num_bytes: 455367007.7
      num_examples: 8910
    - name: bengali
      num_bytes: 455101633.7
      num_examples: 8910
    - name: english
      num_bytes: 454020487.7
      num_examples: 8910
    - name: gujarati
      num_bytes: 455105448.7
      num_examples: 8910
    - name: hindi
      num_bytes: 455210630.7
      num_examples: 8910
    - name: kannada
      num_bytes: 455153061.7
      num_examples: 8910
    - name: malayalam
      num_bytes: 455401526.7
      num_examples: 8910
    - name: marathi
      num_bytes: 455379587.7
      num_examples: 8910
    - name: odia
      num_bytes: 455463255.7
      num_examples: 8910
    - name: sanskrit
      num_bytes: 455470746.7
      num_examples: 8910
    - name: tamil
      num_bytes: 455693348.7
      num_examples: 8910
    - name: telugu
      num_bytes: 455307739.7
      num_examples: 8910
  download_size: 956887209
  dataset_size: 5462674475.399999
configs:
  - config_name: default
    data_files:
      - split: assamese
        path: data/assamese-*
      - split: bengali
        path: data/bengali-*
      - split: english
        path: data/english-*
      - split: gujarati
        path: data/gujarati-*
      - split: hindi
        path: data/hindi-*
      - split: kannada
        path: data/kannada-*
      - split: malayalam
        path: data/malayalam-*
      - split: marathi
        path: data/marathi-*
      - split: odia
        path: data/odia-*
      - split: sanskrit
        path: data/sanskrit-*
      - split: tamil
        path: data/tamil-*
      - split: telugu
        path: data/telugu-*
license: other
license_name: krutrim-community-license-agreement-version-1.0
license_link: LICENSE.md
extra_gated_heading: Acknowledge license to accept the repository
extra_gated_button_content: Acknowledge license
language:
  - as
  - hi
  - gu
  - ml
  - te
  - ta
  - kn
  - or
  - bn
  - en
  - mr
  - sa

IndicPope: Indian Multilingual Translation Dataset For Evaluating Large Vision Language Models

  • You can find the performance of Chitrarth on IndicPope here : Paper | Github | HuggingFace
  • Evaluation Scripts of BharatBench is available here : Github

1. Introduction

IndicPope is a new dataset designed for evaluating Large Vision-Language Models (LVLMs) on Visual Question Answering (VQA) tasks. It focuses on simple Yes-or-No questions probing objects in images (e.g., Is there a car in the image?).

This dataset is built upon POPE: Polling-based Object Probing Evaluation for Object Hallucination (GitHub), which employs negative sampling techniques to test hallucination in vision-language models under Random, Popular, and Adversarial settings.


2. Dataset Details

IndicPope consists of 8.91k samples spanning 12 Indic languages along with English. Each sample includes:

  • Text: The question about the image.
  • Category: The type of sampling used (Random/Popular/Adversarial).
  • Label: The answer (Yes/No).

Supported Languages

  • Assamese
  • Bengali
  • English
  • Gujarati
  • Hindi
  • Kannada
  • Malayalam
  • Marathi
  • Odia
  • Sanskrit
  • Tamil
  • Telugu

3. How to Use and Run

You can load the dataset using the datasets library:

from datasets import load_dataset

dataset = load_dataset("krutrim-ai-labs/IndicPope")
print(dataset)

4. License

This code repository and the model weights are licensed under the Krutrim Community License.

5. Citation

@article{khan2025chitrarth,
  title={Chitrarth: Bridging Vision and Language for a Billion People},
  author={Shaharukh Khan, Ayush Tarun, Abhinav Ravi, Ali Faraz, Akshat Patidar, Praveen Kumar Pokala, Anagha Bhangare, Raja Kolla, Chandra Khatri, Shubham Agarwal},
  journal={arXiv preprint arXiv:2502.15392},
  year={2025}
}

@misc{liu2023improvedllava,
      title={Improved Baselines with Visual Instruction Tuning}, 
      author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
      publisher={arXiv:2310.03744},
      year={2023},
}

@misc{liu2023llava,
      title={Visual Instruction Tuning}, 
      author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
      publisher={NeurIPS},
      year={2023},
}

@article{li2023evaluating,
  title={Evaluating object hallucination in large vision-language models},
  author={Li, Yifan and Du, Yifan and Zhou, Kun and Wang, Jinpeng and Zhao, Wayne Xin and Wen, Ji-Rong},
  journal={arXiv preprint arXiv:2305.10355},
  year={2023}
}

@article{gala2023indictrans2,
  title={Indictrans2: Towards high-quality and accessible machine translation models for all 22 scheduled indian languages},
  author={Gala, Jay and Chitale, Pranjal A and AK, Raghavan and Gumma, Varun and Doddapaneni, Sumanth and Kumar, Aswanth and Nawale, Janki and Sujatha, Anupama and Puduppully, Ratish and Raghavan, Vivek and others},
  journal={arXiv preprint arXiv:2305.16307},
  year={2023}
}

6. Contact

Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub.

7. Acknowledgement

IndicPope is built with reference to the code of the following projects: POPE, and LLaVA-1.5. Thanks for their awesome work!