Whisper child-adult training data ratios for child ASR
Collection
Models that have all been trained with 30 hours of speech, but using different ratios of child-adult speech
•
5 items
•
Updated
This model is a fine-tuned version of openai/whisper-large-v2 on the JASMIN-CGN dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 1.0614 | 0.1157 | 25 | 1.2199 | 38.0783 |
| 1.0412 | 0.2315 | 50 | 1.1881 | 37.6489 |
| 0.9789 | 0.3472 | 75 | 1.1234 | 36.6021 |
| 0.9321 | 0.4630 | 100 | 1.0316 | 35.1931 |
| 0.8436 | 0.5787 | 125 | 0.9318 | 34.7133 |
| 0.7731 | 0.6944 | 150 | 0.8271 | 32.6568 |
| 0.706 | 0.8102 | 175 | 0.7151 | 31.6100 |
| 0.6152 | 0.9259 | 200 | 0.6261 | 29.7816 |
| 0.6491 | 1.0417 | 225 | 0.5572 | 26.0845 |
| 0.506 | 1.1574 | 250 | 0.5066 | 24.5546 |
| 0.5038 | 1.2731 | 275 | 0.4675 | 23.0315 |
| 0.4662 | 1.3889 | 300 | 0.4427 | 22.6524 |
| 0.4616 | 1.5046 | 325 | 0.4296 | 22.3471 |
| 0.476 | 1.6204 | 350 | 0.4208 | 22.1861 |
| 0.456 | 1.7361 | 375 | 0.4139 | 21.3306 |
| 0.4899 | 1.8519 | 400 | 0.4091 | 21.2400 |
| 0.4576 | 1.9676 | 425 | 0.4053 | 20.6965 |
| 0.4289 | 2.0833 | 450 | 0.4021 | 20.5321 |
| 0.4594 | 2.1991 | 475 | 0.3995 | 20.3878 |
| 0.4288 | 2.3148 | 500 | 0.3971 | 20.0087 |
| 0.4221 | 2.4306 | 525 | 0.3954 | 20.3643 |
| 0.4239 | 2.5463 | 550 | 0.3941 | 20.3711 |
| 0.4496 | 2.6620 | 575 | 0.3931 | 20.3476 |
| 0.4303 | 2.7778 | 600 | 0.3923 | 20.3073 |
| 0.458 | 2.8935 | 625 | 0.3919 | 20.2872 |
Base model
openai/whisper-large-v2