neuralvfx's picture
Update README.md
28b444f verified
|
raw
history blame
2.16 kB
# LibreFLUX-ControlNet Inference (WIP)
![Example: Control image vs result](examples/side_by_side.png)
**ControlNet trained on top of LibreFLUX**
- Uses Attention Masking
- Inference runs with CFG
- Trained on 165K segmented images from Meta's [SA1B Dataset](https://ai.meta.com/datasets/segment-anything/)
- Trained using: [https://github.com/NeuralVFX/LibreFLUX-ControlNet](https://github.com/NeuralVFX/LibreFLUX-ControlNet)
- Base model used: [https://huggingface.co/jimmycarter/LibreFLUX](https://huggingface.co/jimmycarter/LibreFLUX)
- Inference code adapted from: [https://github.com/bghira/SimpleTuner](https://github.com/bghira/SimpleTuner)
# Compatibility
```py
pip install -U diffusers==0.32.0
pip install -U "transformers @ git+https://github.com/huggingface/transformers@e15687fffe5c9d20598a19aeab721ae0a7580f8a"
```
# Load Pipeline
```py
import torch
from diffusers import DiffusionPipeline
model_id = "neuralvfx/LibreFlux-ControlNet"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline=model_id,
trust_remote_code=True,
torch_dtype=dtype,
safety_checker=None
).to(device)
```
# Inference
```py
from PIL import Image
# Load Control Image
cond = Image.open("examples/libe_flux_control.png")
cond = cond.resize((1024, 1024))
# Convert PIL image to tensor and move to device with correct dtype
cond_tensor = ToTensor()(cond)[:3,:,:].to(pipe.device, dtype=pipe.dtype).unsqueeze(0)
out = pipe(
prompt="many pieces of drift wood spelling libre flux sitting casting shadow on the lumpy sandy beach with foot prints all over it",
negative_prompt="blurry",
control_image=cond_tensor, # Use the tensor here
num_inference_steps=75,
guidance_scale=4.0,
height =1024,
width=1024,
controlnet_conditioning_scale=1.0,
num_images_per_prompt=1,
control_mode=None,
generator= torch.Generator().manual_seed(32),
return_dict=True,
)
out.images[0]
```