EvoLMM โ€” LoRA Adapters for Qwen2.5-VL

Lightweight LoRA adapters for the EvoLMM framework built on Qwen/Qwen2.5-VL-7B-Instruct. Use these adapters with the base model to run inference or evaluation without full fine-tuning weights.

Requirements

pip install "transformers>=4.43" peft "accelerate>=0.25" pillow qwen-vl-utils torch
export HF_TOKEN=hf_********************************

Quick Start (Transformers + PEFT)

import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from peft import PeftModel

BASE = "Qwen/Qwen2.5-VL-7B-Instruct"
LORA_REPO = "omkarthawakar/EvoLMM"
SUBFOLDER = "solver"
DTYPE = torch.bfloat16

# Loading base model
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    BASE, device_map="auto", torch_dtype=DTYPE
)

# Attachng LoRA
model = PeftModel.from_pretrained(
    model,
    LORA_REPO,
    subfolder=SUBFOLDER,
    token=None,
    use_safetensors=True,
)

processor = AutoProcessor.from_pretrained(BASE)
model.eval()

Minimal single-image inference

from qwen_vl_utils import process_vision_info
from PIL import Image

msg = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": [
        {"type": "image", "image": Image.open("./assets/demo.png").convert("RGB")},
        {"type": "text", "text": "What is the main object in this image?"}
    ]},
]

text = processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info([msg])

inputs = processor(
    text=[text], images=image_inputs, videos=video_inputs,
    padding=True, return_tensors="pt"
).to(model.device)

out = model.generate(**inputs, max_new_tokens=512, do_sample=False)
gen_only = out[0, inputs.input_ids.shape[1]:]
print(processor.tokenizer.decode(gen_only, skip_special_tokens=True).strip())

License

Weights and code follow the licenses of the base model and this repository. Check the base modelโ€™s license at Qwen/Qwen2.5-VL-7B-Instruct. Ensure your usage complies with third-party terms.


Citation

If you use these adapters, please cite EvoLMM:

@misc{thawakar2025evolmmselfevolvinglargemultimodal,
      title={EvoLMM: Self-Evolving Large Multimodal Models with Continuous Rewards}, 
      author={Omkar Thawakar and Shravan Venkatraman and Ritesh Thawkar and Abdelrahman Shaker and Hisham Cholakkal and Rao Muhammad Anwer and Salman Khan and Fahad Khan},
      year={2025},
      eprint={2511.16672},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2511.16672}, 
}

Acknowledgements

Built on top of the Qwen2.5-VL family, Transformers, PEFT, and Accelerate. Thanks to the open-source community for tools that make adapter training and sharing straightforward.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for omkarthawakar/EvoLMM

Finetuned
(904)
this model