FluoGen / cellpose /transforms.py
rayquaza384mega's picture
Upload example images and assets using LFS
9060565
"""
Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import logging
import warnings
import cv2
import numpy as np
import torch
from scipy.ndimage import gaussian_filter1d
from torch.fft import fft2, fftshift, ifft2
transforms_logger = logging.getLogger(__name__)
def _taper_mask(ly=224, lx=224, sig=7.5):
"""
Generate a taper mask.
Args:
ly (int): The height of the mask. Default is 224.
lx (int): The width of the mask. Default is 224.
sig (float): The sigma value for the tapering function. Default is 7.5.
Returns:
numpy.ndarray: The taper mask.
"""
bsize = max(224, max(ly, lx))
xm = np.arange(bsize)
xm = np.abs(xm - xm.mean())
mask = 1 / (1 + np.exp((xm - (bsize / 2 - 20)) / sig))
mask = mask * mask[:, np.newaxis]
mask = mask[bsize // 2 - ly // 2:bsize // 2 + ly // 2 + ly % 2,
bsize // 2 - lx // 2:bsize // 2 + lx // 2 + lx % 2]
return mask
def unaugment_tiles(y):
"""Reverse test-time augmentations for averaging (includes flipping of flowsY and flowsX).
Args:
y (float32): Array of shape (ntiles_y, ntiles_x, chan, Ly, Lx) where chan = (flowsY, flowsX, cell prob).
Returns:
float32: Array of shape (ntiles_y, ntiles_x, chan, Ly, Lx).
"""
for j in range(y.shape[0]):
for i in range(y.shape[1]):
if j % 2 == 0 and i % 2 == 1:
y[j, i] = y[j, i, :, ::-1, :]
y[j, i, 0] *= -1
elif j % 2 == 1 and i % 2 == 0:
y[j, i] = y[j, i, :, :, ::-1]
y[j, i, 1] *= -1
elif j % 2 == 1 and i % 2 == 1:
y[j, i] = y[j, i, :, ::-1, ::-1]
y[j, i, 0] *= -1
y[j, i, 1] *= -1
return y
def average_tiles(y, ysub, xsub, Ly, Lx):
"""
Average the results of the network over tiles.
Args:
y (float): Output of cellpose network for each tile. Shape: [ntiles x nclasses x bsize x bsize]
ysub (list): List of arrays with start and end of tiles in Y of length ntiles
xsub (list): List of arrays with start and end of tiles in X of length ntiles
Ly (int): Size of pre-tiled image in Y (may be larger than original image if image size is less than bsize)
Lx (int): Size of pre-tiled image in X (may be larger than original image if image size is less than bsize)
Returns:
yf (float32): Network output averaged over tiles. Shape: [nclasses x Ly x Lx]
"""
Navg = np.zeros((Ly, Lx))
yf = np.zeros((y.shape[1], Ly, Lx), np.float32)
# taper edges of tiles
mask = _taper_mask(ly=y.shape[-2], lx=y.shape[-1])
for j in range(len(ysub)):
yf[:, ysub[j][0]:ysub[j][1], xsub[j][0]:xsub[j][1]] += y[j] * mask
Navg[ysub[j][0]:ysub[j][1], xsub[j][0]:xsub[j][1]] += mask
yf /= Navg
return yf
def make_tiles(imgi, bsize=224, augment=False, tile_overlap=0.1):
"""Make tiles of image to run at test-time.
Args:
imgi (np.ndarray): Array of shape (nchan, Ly, Lx) representing the input image.
bsize (int, optional): Size of tiles. Defaults to 224.
augment (bool, optional): Whether to flip tiles and set tile_overlap=2. Defaults to False.
tile_overlap (float, optional): Fraction of overlap of tiles. Defaults to 0.1.
Returns:
A tuple containing (IMG, ysub, xsub, Ly, Lx):
IMG (np.ndarray): Array of shape (ntiles, nchan, bsize, bsize) representing the tiles.
ysub (list): List of arrays with start and end of tiles in Y of length ntiles.
xsub (list): List of arrays with start and end of tiles in X of length ntiles.
Ly (int): Height of the input image.
Lx (int): Width of the input image.
"""
nchan, Ly, Lx = imgi.shape
if augment:
bsize = np.int32(bsize)
# pad if image smaller than bsize
if Ly < bsize:
imgi = np.concatenate((imgi, np.zeros((nchan, bsize - Ly, Lx))), axis=1)
Ly = bsize
if Lx < bsize:
imgi = np.concatenate((imgi, np.zeros((nchan, Ly, bsize - Lx))), axis=2)
Ly, Lx = imgi.shape[-2:]
# tiles overlap by half of tile size
ny = max(2, int(np.ceil(2. * Ly / bsize)))
nx = max(2, int(np.ceil(2. * Lx / bsize)))
ystart = np.linspace(0, Ly - bsize, ny).astype(int)
xstart = np.linspace(0, Lx - bsize, nx).astype(int)
ysub = []
xsub = []
# flip tiles so that overlapping segments are processed in rotation
IMG = np.zeros((len(ystart), len(xstart), nchan, bsize, bsize), np.float32)
for j in range(len(ystart)):
for i in range(len(xstart)):
ysub.append([ystart[j], ystart[j] + bsize])
xsub.append([xstart[i], xstart[i] + bsize])
IMG[j, i] = imgi[:, ysub[-1][0]:ysub[-1][1], xsub[-1][0]:xsub[-1][1]]
# flip tiles to allow for augmentation of overlapping segments
if j % 2 == 0 and i % 2 == 1:
IMG[j, i] = IMG[j, i, :, ::-1, :]
elif j % 2 == 1 and i % 2 == 0:
IMG[j, i] = IMG[j, i, :, :, ::-1]
elif j % 2 == 1 and i % 2 == 1:
IMG[j, i] = IMG[j, i, :, ::-1, ::-1]
else:
tile_overlap = min(0.5, max(0.05, tile_overlap))
bsizeY, bsizeX = min(bsize, Ly), min(bsize, Lx)
bsizeY = np.int32(bsizeY)
bsizeX = np.int32(bsizeX)
# tiles overlap by 10% tile size
ny = 1 if Ly <= bsize else int(np.ceil((1. + 2 * tile_overlap) * Ly / bsize))
nx = 1 if Lx <= bsize else int(np.ceil((1. + 2 * tile_overlap) * Lx / bsize))
ystart = np.linspace(0, Ly - bsizeY, ny).astype(int)
xstart = np.linspace(0, Lx - bsizeX, nx).astype(int)
ysub = []
xsub = []
IMG = np.zeros((len(ystart), len(xstart), nchan, bsizeY, bsizeX), np.float32)
for j in range(len(ystart)):
for i in range(len(xstart)):
ysub.append([ystart[j], ystart[j] + bsizeY])
xsub.append([xstart[i], xstart[i] + bsizeX])
IMG[j, i] = imgi[:, ysub[-1][0]:ysub[-1][1], xsub[-1][0]:xsub[-1][1]]
return IMG, ysub, xsub, Ly, Lx
def normalize99(Y, lower=1, upper=99, copy=True, downsample=False):
"""
Normalize the image so that 0.0 corresponds to the 1st percentile and 1.0 corresponds to the 99th percentile.
Args:
Y (ndarray): The input image (for downsample, use [Ly x Lx] or [Lz x Ly x Lx]).
lower (int, optional): The lower percentile. Defaults to 1.
upper (int, optional): The upper percentile. Defaults to 99.
copy (bool, optional): Whether to create a copy of the input image. Defaults to True.
downsample (bool, optional): Whether to downsample image to compute percentiles. Defaults to False.
Returns:
ndarray: The normalized image.
"""
X = Y.copy() if copy else Y
X = X.astype("float32") if X.dtype!="float64" and X.dtype!="float32" else X
if downsample and X.size > 224**3:
nskip = [max(1, X.shape[i] // 224) for i in range(X.ndim)]
nskip[0] = max(1, X.shape[0] // 50) if X.ndim == 3 else nskip[0]
slc = tuple([slice(0, X.shape[i], nskip[i]) for i in range(X.ndim)])
x01 = np.percentile(X[slc], lower)
x99 = np.percentile(X[slc], upper)
else:
x01 = np.percentile(X, lower)
x99 = np.percentile(X, upper)
if x99 - x01 > 1e-3:
X -= x01
X /= (x99 - x01)
else:
X[:] = 0
return X
def normalize99_tile(img, blocksize=100, lower=1., upper=99., tile_overlap=0.1,
norm3D=False, smooth3D=1, is3D=False):
"""Compute normalization like normalize99 function but in tiles.
Args:
img (numpy.ndarray): Array of shape (Lz x) Ly x Lx (x nchan) containing the image.
blocksize (float, optional): Size of tiles. Defaults to 100.
lower (float, optional): Lower percentile for normalization. Defaults to 1.0.
upper (float, optional): Upper percentile for normalization. Defaults to 99.0.
tile_overlap (float, optional): Fraction of overlap of tiles. Defaults to 0.1.
norm3D (bool, optional): Use same tiled normalization for each z-plane. Defaults to False.
smooth3D (int, optional): Smoothing factor for 3D normalization. Defaults to 1.
is3D (bool, optional): Set to True if image is a 3D stack. Defaults to False.
Returns:
numpy.ndarray: Normalized image array of shape (Lz x) Ly x Lx (x nchan).
"""
is1c = True if img.ndim == 2 or (is3D and img.ndim == 3) else False
is3D = True if img.ndim > 3 or (is3D and img.ndim == 3) else False
img = img[..., np.newaxis] if is1c else img
img = img[np.newaxis, ...] if img.ndim == 3 else img
Lz, Ly, Lx, nchan = img.shape
tile_overlap = min(0.5, max(0.05, tile_overlap))
blocksizeY, blocksizeX = min(blocksize, Ly), min(blocksize, Lx)
blocksizeY = np.int32(blocksizeY)
blocksizeX = np.int32(blocksizeX)
# tiles overlap by 10% tile size
ny = 1 if Ly <= blocksize else int(np.ceil(
(1. + 2 * tile_overlap) * Ly / blocksize))
nx = 1 if Lx <= blocksize else int(np.ceil(
(1. + 2 * tile_overlap) * Lx / blocksize))
ystart = np.linspace(0, Ly - blocksizeY, ny).astype(int)
xstart = np.linspace(0, Lx - blocksizeX, nx).astype(int)
ysub = []
xsub = []
for j in range(len(ystart)):
for i in range(len(xstart)):
ysub.append([ystart[j], ystart[j] + blocksizeY])
xsub.append([xstart[i], xstart[i] + blocksizeX])
x01_tiles_z = []
x99_tiles_z = []
for z in range(Lz):
IMG = np.zeros((len(ystart), len(xstart), blocksizeY, blocksizeX, nchan),
"float32")
k = 0
for j in range(len(ystart)):
for i in range(len(xstart)):
IMG[j, i] = img[z, ysub[k][0]:ysub[k][1], xsub[k][0]:xsub[k][1], :]
k += 1
x01_tiles = np.percentile(IMG, lower, axis=(-3, -2))
x99_tiles = np.percentile(IMG, upper, axis=(-3, -2))
# fill areas with small differences with neighboring squares
to_fill = np.zeros(x01_tiles.shape[:2], "bool")
for c in range(nchan):
to_fill = x99_tiles[:, :, c] - x01_tiles[:, :, c] < +1e-3
if to_fill.sum() > 0 and to_fill.sum() < x99_tiles[:, :, c].size:
fill_vals = np.nonzero(to_fill)
fill_neigh = np.nonzero(~to_fill)
nearest_neigh = (
(fill_vals[0] - fill_neigh[0][:, np.newaxis])**2 +
(fill_vals[1] - fill_neigh[1][:, np.newaxis])**2).argmin(axis=0)
x01_tiles[fill_vals[0], fill_vals[1],
c] = x01_tiles[fill_neigh[0][nearest_neigh],
fill_neigh[1][nearest_neigh], c]
x99_tiles[fill_vals[0], fill_vals[1],
c] = x99_tiles[fill_neigh[0][nearest_neigh],
fill_neigh[1][nearest_neigh], c]
elif to_fill.sum() > 0 and to_fill.sum() == x99_tiles[:, :, c].size:
x01_tiles[:, :, c] = 0
x99_tiles[:, :, c] = 1
x01_tiles_z.append(x01_tiles)
x99_tiles_z.append(x99_tiles)
x01_tiles_z = np.array(x01_tiles_z)
x99_tiles_z = np.array(x99_tiles_z)
# do not smooth over z-axis if not normalizing separately per plane
for a in range(2):
x01_tiles_z = gaussian_filter1d(x01_tiles_z, 1, axis=a)
x99_tiles_z = gaussian_filter1d(x99_tiles_z, 1, axis=a)
if norm3D:
smooth3D = 1 if smooth3D == 0 else smooth3D
x01_tiles_z = gaussian_filter1d(x01_tiles_z, smooth3D, axis=a)
x99_tiles_z = gaussian_filter1d(x99_tiles_z, smooth3D, axis=a)
if not norm3D and Lz > 1:
x01 = np.zeros((len(x01_tiles_z), Ly, Lx, nchan), "float32")
x99 = np.zeros((len(x01_tiles_z), Ly, Lx, nchan), "float32")
for z in range(Lz):
x01_rsz = cv2.resize(x01_tiles_z[z], (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
x01[z] = x01_rsz[..., np.newaxis] if nchan == 1 else x01_rsz
x99_rsz = cv2.resize(x99_tiles_z[z], (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
x99[z] = x99_rsz[..., np.newaxis] if nchan == 1 else x01_rsz
if (x99 - x01).min() < 1e-3:
raise ZeroDivisionError(
"cannot use norm3D=False with tile_norm, sample is too sparse; set norm3D=True or tile_norm=0"
)
else:
x01 = cv2.resize(x01_tiles_z.mean(axis=0), (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
x99 = cv2.resize(x99_tiles_z.mean(axis=0), (Lx, Ly),
interpolation=cv2.INTER_LINEAR)
if x01.ndim < 3:
x01 = x01[..., np.newaxis]
x99 = x99[..., np.newaxis]
if is1c:
img, x01, x99 = img.squeeze(), x01.squeeze(), x99.squeeze()
elif not is3D:
img, x01, x99 = img[0], x01[0], x99[0]
# normalize
img -= x01
img /= (x99 - x01)
return img
def gaussian_kernel(sigma, Ly, Lx, device=torch.device("cpu")):
"""
Generates a 2D Gaussian kernel.
Args:
sigma (float): Standard deviation of the Gaussian distribution.
Ly (int): Number of pixels in the y-axis.
Lx (int): Number of pixels in the x-axis.
device (torch.device, optional): Device to store the kernel tensor. Defaults to torch.device("cpu").
Returns:
torch.Tensor: 2D Gaussian kernel tensor.
"""
y = torch.linspace(-Ly / 2, Ly / 2 + 1, Ly, device=device)
x = torch.linspace(-Ly / 2, Ly / 2 + 1, Lx, device=device)
y, x = torch.meshgrid(y, x, indexing="ij")
kernel = torch.exp(-(y**2 + x**2) / (2 * sigma**2))
kernel /= kernel.sum()
return kernel
def smooth_sharpen_img(img, smooth_radius=6, sharpen_radius=12,
device=torch.device("cpu"), is3D=False):
"""Sharpen blurry images with surround subtraction and/or smooth noisy images.
Args:
img (float32): Array that's (Lz x) Ly x Lx (x nchan).
smooth_radius (float, optional): Size of gaussian smoothing filter, recommended to be 1/10-1/4 of cell diameter
(if also sharpening, should be 2-3x smaller than sharpen_radius). Defaults to 6.
sharpen_radius (float, optional): Size of gaussian surround filter, recommended to be 1/8-1/2 of cell diameter
(if also smoothing, should be 2-3x larger than smooth_radius). Defaults to 12.
device (torch.device, optional): Device on which to perform sharpening.
Will be faster on GPU but need to ensure GPU has RAM for image. Defaults to torch.device("cpu").
is3D (bool, optional): If image is 3D stack (only necessary to set if img.ndim==3). Defaults to False.
Returns:
img_sharpen (float32): Array that's (Lz x) Ly x Lx (x nchan).
"""
img_sharpen = torch.from_numpy(img.astype("float32")).to(device)
shape = img_sharpen.shape
is1c = True if img_sharpen.ndim == 2 or (is3D and img_sharpen.ndim == 3) else False
is3D = True if img_sharpen.ndim > 3 or (is3D and img_sharpen.ndim == 3) else False
img_sharpen = img_sharpen.unsqueeze(-1) if is1c else img_sharpen
img_sharpen = img_sharpen.unsqueeze(0) if img_sharpen.ndim == 3 else img_sharpen
Lz, Ly, Lx, nchan = img_sharpen.shape
if smooth_radius > 0:
kernel = gaussian_kernel(smooth_radius, Ly, Lx, device=device)
if sharpen_radius > 0:
kernel += -1 * gaussian_kernel(sharpen_radius, Ly, Lx, device=device)
elif sharpen_radius > 0:
kernel = -1 * gaussian_kernel(sharpen_radius, Ly, Lx, device=device)
kernel[Ly // 2, Lx // 2] = 1
fhp = fft2(kernel)
for z in range(Lz):
for c in range(nchan):
img_filt = torch.real(ifft2(
fft2(img_sharpen[z, :, :, c]) * torch.conj(fhp)))
img_filt = fftshift(img_filt)
img_sharpen[z, :, :, c] = img_filt
img_sharpen = img_sharpen.reshape(shape)
return img_sharpen.cpu().numpy()
def move_axis(img, m_axis=-1, first=True):
""" move axis m_axis to first or last position """
if m_axis == -1:
m_axis = img.ndim - 1
m_axis = min(img.ndim - 1, m_axis)
axes = np.arange(0, img.ndim)
if first:
axes[1:m_axis + 1] = axes[:m_axis]
axes[0] = m_axis
else:
axes[m_axis:-1] = axes[m_axis + 1:]
axes[-1] = m_axis
img = img.transpose(tuple(axes))
return img
def move_min_dim(img, force=False):
"""Move the minimum dimension last as channels if it is less than 10 or force is True.
Args:
img (ndarray): The input image.
force (bool, optional): If True, the minimum dimension will always be moved.
Defaults to False.
Returns:
ndarray: The image with the minimum dimension moved to the last axis as channels.
"""
if len(img.shape) > 2:
min_dim = min(img.shape)
if min_dim < 10 or force:
if img.shape[-1] == min_dim:
channel_axis = -1
else:
channel_axis = (img.shape).index(min_dim)
img = move_axis(img, m_axis=channel_axis, first=False)
return img
def update_axis(m_axis, to_squeeze, ndim):
"""
Squeeze the axis value based on the given parameters.
Args:
m_axis (int): The current axis value.
to_squeeze (numpy.ndarray): An array of indices to squeeze.
ndim (int): The number of dimensions.
Returns:
int or None: The updated axis value.
"""
if m_axis == -1:
m_axis = ndim - 1
if (to_squeeze == m_axis).sum() == 1:
m_axis = None
else:
inds = np.ones(ndim, bool)
inds[to_squeeze] = False
m_axis = np.nonzero(np.arange(0, ndim)[inds] == m_axis)[0]
if len(m_axis) > 0:
m_axis = m_axis[0]
else:
m_axis = None
return m_axis
def convert_image(x, channels, channel_axis=None, z_axis=None, do_3D=False, nchan=2):
"""Converts the image to have the z-axis first, channels last.
Args:
x (numpy.ndarray or torch.Tensor): The input image.
channels (list or None): The list of channels to use (ones-based, 0=gray). If None, all channels are kept.
channel_axis (int or None): The axis of the channels in the input image. If None, the axis is determined automatically.
z_axis (int or None): The axis of the z-dimension in the input image. If None, the axis is determined automatically.
do_3D (bool): Whether to process the image in 3D mode. Defaults to False.
nchan (int): The number of channels to keep if the input image has more than nchan channels.
Returns:
numpy.ndarray: The converted image.
Raises:
ValueError: If the input image has less than two channels and channels are not specified.
ValueError: If the input image is 2D and do_3D is True.
ValueError: If the input image is 4D and do_3D is False.
"""
# check if image is a torch array instead of numpy array
# converts torch to numpy
ndim = x.ndim
if torch.is_tensor(x):
transforms_logger.warning("torch array used as input, converting to numpy")
x = x.cpu().numpy()
# squeeze image, and if channel_axis or z_axis given, transpose image
if x.ndim > 3:
to_squeeze = np.array([int(isq) for isq, s in enumerate(x.shape) if s == 1])
# remove channel axis if number of channels is 1
if len(to_squeeze) > 0:
channel_axis = update_axis(
channel_axis, to_squeeze,
x.ndim) if channel_axis is not None else None
z_axis = update_axis(z_axis, to_squeeze,
x.ndim) if z_axis is not None else None
x = x.squeeze()
# put z axis first
if z_axis is not None and x.ndim > 2 and z_axis != 0:
x = move_axis(x, m_axis=z_axis, first=True)
if channel_axis is not None:
channel_axis += 1
z_axis = 0
elif z_axis is None and x.ndim > 2 and channels is not None and min(x.shape) > 5 :
# if there are > 5 channels and channels!=None, assume first dimension is z
min_dim = min(x.shape)
if min_dim != channel_axis:
z_axis = (x.shape).index(min_dim)
if z_axis != 0:
x = move_axis(x, m_axis=z_axis, first=True)
if channel_axis is not None:
channel_axis += 1
transforms_logger.warning(f"z_axis not specified, assuming it is dim {z_axis}")
transforms_logger.warning(f"if this is actually the channel_axis, use 'model.eval(channel_axis={z_axis}, ...)'")
z_axis = 0
if z_axis is not None:
if x.ndim == 3:
x = x[..., np.newaxis]
# put channel axis last
if channel_axis is not None and x.ndim > 2:
x = move_axis(x, m_axis=channel_axis, first=False)
elif x.ndim == 2:
x = x[:, :, np.newaxis]
if do_3D:
if ndim < 3:
transforms_logger.critical("ERROR: cannot process 2D images in 3D mode")
raise ValueError("ERROR: cannot process 2D images in 3D mode")
elif x.ndim < 4:
x = x[..., np.newaxis]
if channel_axis is None:
x = move_min_dim(x)
if x.ndim > 3:
transforms_logger.info(
"multi-stack tiff read in as having %d planes %d channels" %
(x.shape[0], x.shape[-1]))
# convert to float32
x = x.astype("float32")
if channels is not None:
channels = channels[0] if len(channels) == 1 else channels
if len(channels) < 2:
transforms_logger.critical("ERROR: two channels not specified")
raise ValueError("ERROR: two channels not specified")
x = reshape(x, channels=channels)
else:
# code above put channels last
if nchan is not None and x.shape[-1] > nchan:
transforms_logger.warning(
"WARNING: more than %d channels given, use 'channels' input for specifying channels - just using first %d channels to run processing"
% (nchan, nchan))
x = x[..., :nchan]
# if not do_3D and x.ndim > 3:
# transforms_logger.critical("ERROR: cannot process 4D images in 2D mode")
# raise ValueError("ERROR: cannot process 4D images in 2D mode")
if nchan is not None and x.shape[-1] < nchan:
x = np.concatenate((x, np.tile(np.zeros_like(x), (1, 1, nchan - 1))),
axis=-1)
return x
def reshape(data, channels=[0, 0], chan_first=False):
"""Reshape data using channels.
Args:
data (numpy.ndarray): The input data. It should have shape (Z x ) Ly x Lx x nchan
if data.ndim==3 and data.shape[0]<8, it is assumed to be nchan x Ly x Lx.
channels (list of int, optional): The channels to use for reshaping. The first element
of the list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue). The
second element of the list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue).
For instance, to train on grayscale images, input [0,0]. To train on images with cells
in green and nuclei in blue, input [2,3]. Defaults to [0, 0].
chan_first (bool, optional): Whether to return the reshaped data with channel as the first
dimension. Defaults to False.
Returns:
numpy.ndarray: The reshaped data with shape (Z x ) Ly x Lx x nchan (if chan_first==False).
"""
if data.ndim < 3:
data = data[:, :, np.newaxis]
elif data.shape[0] < 8 and data.ndim == 3:
data = np.transpose(data, (1, 2, 0))
# use grayscale image
if data.shape[-1] == 1:
data = np.concatenate((data, np.zeros(data.shape, "float32")), axis=-1)
else:
if channels[0] == 0:
data = data.mean(axis=-1, keepdims=True)
data = np.concatenate((data, np.zeros(data.shape, "float32")), axis=-1)
else:
chanid = [channels[0] - 1]
if channels[1] > 0:
chanid.append(channels[1] - 1)
data = data[..., chanid]
for i in range(data.shape[-1]):
if np.ptp(data[..., i]) == 0.0:
if i == 0:
warnings.warn("'chan to seg' to seg has value range of ZERO")
else:
warnings.warn(
"'chan2 (opt)' has value range of ZERO, can instead set chan2 to 0"
)
if data.shape[-1] == 1:
data = np.concatenate((data, np.zeros(data.shape, "float32")), axis=-1)
if chan_first:
if data.ndim == 4:
data = np.transpose(data, (3, 0, 1, 2))
else:
data = np.transpose(data, (2, 0, 1))
return data
def normalize_img(img, normalize=True, norm3D=True, invert=False, lowhigh=None,
percentile=(1., 99.), sharpen_radius=0, smooth_radius=0,
tile_norm_blocksize=0, tile_norm_smooth3D=1, axis=-1):
"""Normalize each channel of the image with optional inversion, smoothing, and sharpening.
Args:
img (ndarray): The input image. It should have at least 3 dimensions.
If it is 4-dimensional, it assumes the first non-channel axis is the Z dimension.
normalize (bool, optional): Whether to perform normalization. Defaults to True.
norm3D (bool, optional): Whether to normalize in 3D. If True, the entire 3D stack will
be normalized per channel. If False, normalization is applied per Z-slice. Defaults to False.
invert (bool, optional): Whether to invert the image. Useful if cells are dark instead of bright.
Defaults to False.
lowhigh (tuple or ndarray, optional): The lower and upper bounds for normalization.
Can be a tuple of two values (applied to all channels) or an array of shape (nchan, 2)
for per-channel normalization. Incompatible with smoothing and sharpening.
Defaults to None.
percentile (tuple, optional): The lower and upper percentiles for normalization. If provided, it should be
a tuple of two values. Each value should be between 0 and 100. Defaults to (1.0, 99.0).
sharpen_radius (int, optional): The radius for sharpening the image. Defaults to 0.
smooth_radius (int, optional): The radius for smoothing the image. Defaults to 0.
tile_norm_blocksize (int, optional): The block size for tile-based normalization. Defaults to 0.
tile_norm_smooth3D (int, optional): The smoothness factor for tile-based normalization in 3D. Defaults to 1.
axis (int, optional): The channel axis to loop over for normalization. Defaults to -1.
Returns:
ndarray: The normalized image of the same size.
Raises:
ValueError: If the image has less than 3 dimensions.
ValueError: If the provided lowhigh or percentile values are invalid.
ValueError: If the image is inverted without normalization.
"""
if img.ndim < 3:
error_message = "Image needs to have at least 3 dimensions"
transforms_logger.critical(error_message)
raise ValueError(error_message)
img_norm = img if img.dtype=="float32" else img.astype(np.float32)
if axis != -1 and axis != img_norm.ndim - 1:
img_norm = np.moveaxis(img_norm, axis, -1) # Move channel axis to last
nchan = img_norm.shape[-1]
# Validate and handle lowhigh bounds
if lowhigh is not None:
lowhigh = np.array(lowhigh)
if lowhigh.shape == (2,):
lowhigh = np.tile(lowhigh, (nchan, 1)) # Expand to per-channel bounds
elif lowhigh.shape != (nchan, 2):
error_message = "`lowhigh` must have shape (2,) or (nchan, 2)"
transforms_logger.critical(error_message)
raise ValueError(error_message)
# Validate percentile
if percentile is None:
percentile = (1.0, 99.0)
elif not (0 <= percentile[0] < percentile[1] <= 100):
error_message = "Invalid percentile range, should be between 0 and 100"
transforms_logger.critical(error_message)
raise ValueError(error_message)
# Apply normalization based on lowhigh or percentile
cgood = np.zeros(nchan, "bool")
if lowhigh is not None:
for c in range(nchan):
lower = lowhigh[c, 0]
upper = lowhigh[c, 1]
img_norm[..., c] -= lower
img_norm[..., c] /= (upper - lower)
cgood[c] = True
else:
# Apply sharpening and smoothing if specified
if sharpen_radius > 0 or smooth_radius > 0:
img_norm = smooth_sharpen_img(
img_norm, sharpen_radius=sharpen_radius, smooth_radius=smooth_radius
)
# Apply tile-based normalization or standard normalization
if tile_norm_blocksize > 0:
img_norm = normalize99_tile(
img_norm,
blocksize=tile_norm_blocksize,
lower=percentile[0],
upper=percentile[1],
smooth3D=tile_norm_smooth3D,
norm3D=norm3D,
)
elif normalize:
if img_norm.ndim == 3 or norm3D: # i.e. if YXC, or ZYXC with norm3D=True
for c in range(nchan):
if np.ptp(img_norm[..., c]) > 0.:
img_norm[..., c] = normalize99(
img_norm[..., c],
lower=percentile[0],
upper=percentile[1],
copy=False, downsample=True,
)
cgood[c] = True
else: # i.e. if ZYXC with norm3D=False then per Z-slice
for z in range(img_norm.shape[0]):
for c in range(nchan):
if np.ptp(img_norm[z, ..., c]) > 0.:
img_norm[z, ..., c] = normalize99(
img_norm[z, ..., c],
lower=percentile[0],
upper=percentile[1],
copy=False, downsample=True,
)
cgood[c] = True
if invert:
if lowhigh is not None or tile_norm_blocksize > 0 or normalize:
for c in range(nchan):
if cgood[c]:
img_norm[..., c] = 1 - img_norm[..., c]
else:
error_message = "Cannot invert image without normalization"
transforms_logger.critical(error_message)
raise ValueError(error_message)
# Move channel axis back to the original position
if axis != -1 and axis != img_norm.ndim - 1:
img_norm = np.moveaxis(img_norm, -1, axis)
return img_norm
def resize_safe(img, Ly, Lx, interpolation=cv2.INTER_LINEAR):
"""OpenCV resize function does not support uint32.
This function converts the image to float32 before resizing and then converts it back to uint32. Not safe!
References issue: https://github.com/MouseLand/cellpose/issues/937
Implications:
* Runtime: Runtime increases by 5x-50x due to type casting. However, with resizing being very efficient, this is not
a big issue. A 10,000x10,000 image takes 0.47s instead of 0.016s to cast and resize on 32 cores on GPU.
* Memory: However, memory usage increases. Not tested by how much.
Args:
img (ndarray): Image of size [Ly x Lx].
Ly (int): Desired height of the resized image.
Lx (int): Desired width of the resized image.
interpolation (int, optional): OpenCV interpolation method. Defaults to cv2.INTER_LINEAR.
Returns:
ndarray: Resized image of size [Ly x Lx].
"""
# cast image
cast = img.dtype == np.uint32
if cast:
img = img.astype(np.float32)
# resize
img = cv2.resize(img, (Lx, Ly), interpolation=interpolation)
# cast back
if cast:
img = img.round().astype(np.uint32)
return img
def resize_image(img0, Ly=None, Lx=None, rsz=None, interpolation=cv2.INTER_LINEAR,
no_channels=False):
"""Resize image for computing flows / unresize for computing dynamics.
Args:
img0 (ndarray): Image of size [Y x X x nchan] or [Lz x Y x X x nchan] or [Lz x Y x X].
Ly (int, optional): Desired height of the resized image. Defaults to None.
Lx (int, optional): Desired width of the resized image. Defaults to None.
rsz (float, optional): Resize coefficient(s) for the image. If Ly is None, rsz is used. Defaults to None.
interpolation (int, optional): OpenCV interpolation method. Defaults to cv2.INTER_LINEAR.
no_channels (bool, optional): Flag indicating whether to treat the third dimension as a channel.
Defaults to False.
Returns:
ndarray: Resized image of size [Ly x Lx x nchan] or [Lz x Ly x Lx x nchan].
Raises:
ValueError: If Ly is None and rsz is None.
"""
if Ly is None and rsz is None:
error_message = "must give size to resize to or factor to use for resizing"
transforms_logger.critical(error_message)
raise ValueError(error_message)
if Ly is None:
# determine Ly and Lx using rsz
if not isinstance(rsz, list) and not isinstance(rsz, np.ndarray):
rsz = [rsz, rsz]
if no_channels:
Ly = int(img0.shape[-2] * rsz[-2])
Lx = int(img0.shape[-1] * rsz[-1])
else:
Ly = int(img0.shape[-3] * rsz[-2])
Lx = int(img0.shape[-2] * rsz[-1])
# no_channels useful for z-stacks, so the third dimension is not treated as a channel
# but if this is called for grayscale images, they first become [Ly,Lx,2] so ndim=3 but
if (img0.ndim > 2 and no_channels) or (img0.ndim == 4 and not no_channels):
if Ly == 0 or Lx == 0:
raise ValueError(
"anisotropy too high / low -- not enough pixels to resize to ratio")
for i, img in enumerate(img0):
imgi = resize_safe(img, Ly, Lx, interpolation=interpolation)
if i==0:
if no_channels:
imgs = np.zeros((img0.shape[0], Ly, Lx), imgi.dtype)
else:
imgs = np.zeros((img0.shape[0], Ly, Lx, img0.shape[-1]), imgi.dtype)
imgs[i] = imgi if imgi.ndim > 2 or no_channels else imgi[..., np.newaxis]
else:
imgs = resize_safe(img0, Ly, Lx, interpolation=interpolation)
return imgs
def get_pad_yx(Ly, Lx, div=16, extra=1, min_size=None):
if min_size is None or Ly >= min_size[-2]:
Lpad = int(div * np.ceil(Ly / div) - Ly)
else:
Lpad = min_size[-2] - Ly
ypad1 = extra * div // 2 + Lpad // 2
ypad2 = extra * div // 2 + Lpad - Lpad // 2
if min_size is None or Lx >= min_size[-1]:
Lpad = int(div * np.ceil(Lx / div) - Lx)
else:
Lpad = min_size[-1] - Lx
xpad1 = extra * div // 2 + Lpad // 2
xpad2 = extra * div // 2 + Lpad - Lpad // 2
return ypad1, ypad2, xpad1, xpad2
def pad_image_ND(img0, div=16, extra=1, min_size=None, zpad=False):
"""Pad image for test-time so that its dimensions are a multiple of 16 (2D or 3D).
Args:
img0 (ndarray): Image of size [nchan (x Lz) x Ly x Lx].
div (int, optional): Divisor for padding. Defaults to 16.
extra (int, optional): Extra padding. Defaults to 1.
min_size (tuple, optional): Minimum size of the image. Defaults to None.
Returns:
A tuple containing (I, ysub, xsub) or (I, ysub, xsub, zsub), I is padded image, -sub are ranges of pixels in the padded image corresponding to img0.
"""
Ly, Lx = img0.shape[-2:]
ypad1, ypad2, xpad1, xpad2 = get_pad_yx(Ly, Lx, div=div, extra=extra, min_size=min_size)
if img0.ndim > 3:
if zpad:
Lpad = int(div * np.ceil(img0.shape[-3] / div) - img0.shape[-3])
zpad1 = extra * div // 2 + Lpad // 2
zpad2 = extra * div // 2 + Lpad - Lpad // 2
else:
zpad1, zpad2 = 0, 0
pads = np.array([[0, 0], [zpad1, zpad2], [ypad1, ypad2], [xpad1, xpad2]])
else:
pads = np.array([[0, 0], [ypad1, ypad2], [xpad1, xpad2]])
I = np.pad(img0, pads, mode="constant")
ysub = np.arange(ypad1, ypad1 + Ly)
xsub = np.arange(xpad1, xpad1 + Lx)
if zpad:
zsub = np.arange(zpad1, zpad1 + img0.shape[-3])
return I, ysub, xsub, zsub
else:
return I, ysub, xsub
def random_rotate_and_resize(X, Y=None, scale_range=1., xy=(224, 224), do_3D=False,
zcrop=48, do_flip=True, rotate=True, rescale=None, unet=False,
random_per_image=True):
"""Augmentation by random rotation and resizing.
Args:
X (list of ND-arrays, float): List of image arrays of size [nchan x Ly x Lx] or [Ly x Lx].
Y (list of ND-arrays, float, optional): List of image labels of size [nlabels x Ly x Lx] or [Ly x Lx].
The 1st channel of Y is always nearest-neighbor interpolated (assumed to be masks or 0-1 representation).
If Y.shape[0]==3 and not unet, then the labels are assumed to be [cell probability, Y flow, X flow].
If unet, second channel is dist_to_bound. Defaults to None.
scale_range (float, optional): Range of resizing of images for augmentation.
Images are resized by (1-scale_range/2) + scale_range * np.random.rand(). Defaults to 1.0.
xy (tuple, int, optional): Size of transformed images to return. Defaults to (224,224).
do_flip (bool, optional): Whether or not to flip images horizontally. Defaults to True.
rotate (bool, optional): Whether or not to rotate images. Defaults to True.
rescale (array, float, optional): How much to resize images by before performing augmentations. Defaults to None.
unet (bool, optional): Whether or not to use unet. Defaults to False.
random_per_image (bool, optional): Different random rotate and resize per image. Defaults to True.
Returns:
A tuple containing (imgi, lbl, scale): imgi (ND-array, float): Transformed images in array [nimg x nchan x xy[0] x xy[1]];
lbl (ND-array, float): Transformed labels in array [nimg x nchan x xy[0] x xy[1]];
scale (array, float): Amount each image was resized by.
"""
scale_range = max(0, min(2, float(scale_range)))
nimg = len(X)
if X[0].ndim > 2:
nchan = X[0].shape[0]
else:
nchan = 1
if do_3D and X[0].ndim > 3:
shape = (zcrop, xy[0], xy[1])
else:
shape = (xy[0], xy[1])
imgi = np.zeros((nimg, nchan, *shape), "float32")
lbl = []
if Y is not None:
if Y[0].ndim > 2:
nt = Y[0].shape[0]
else:
nt = 1
lbl = np.zeros((nimg, nt, *shape), np.float32)
scale = np.ones(nimg, np.float32)
for n in range(nimg):
if random_per_image or n == 0:
Ly, Lx = X[n].shape[-2:]
# generate random augmentation parameters
flip = np.random.rand() > .5
theta = np.random.rand() * np.pi * 2 if rotate else 0.
scale[n] = (1 - scale_range / 2) + scale_range * np.random.rand()
if rescale is not None:
scale[n] *= 1. / rescale[n]
dxy = np.maximum(0, np.array([Lx * scale[n] - xy[1],
Ly * scale[n] - xy[0]]))
dxy = (np.random.rand(2,) - .5) * dxy
# create affine transform
cc = np.array([Lx / 2, Ly / 2])
cc1 = cc - np.array([Lx - xy[1], Ly - xy[0]]) / 2 + dxy
pts1 = np.float32([cc, cc + np.array([1, 0]), cc + np.array([0, 1])])
pts2 = np.float32([
cc1,
cc1 + scale[n] * np.array([np.cos(theta), np.sin(theta)]),
cc1 + scale[n] *
np.array([np.cos(np.pi / 2 + theta),
np.sin(np.pi / 2 + theta)])
])
M = cv2.getAffineTransform(pts1, pts2)
img = X[n].copy()
if Y is not None:
labels = Y[n].copy()
if labels.ndim < 3:
labels = labels[np.newaxis, :, :]
if do_3D:
Lz = X[n].shape[-3]
flip_z = np.random.rand() > .5
lz = int(np.round(zcrop / scale[n]))
iz = np.random.randint(0, Lz - lz)
img = img[:,iz:iz + lz,:,:]
if Y is not None:
labels = labels[:,iz:iz + lz,:,:]
if do_flip:
if flip:
img = img[..., ::-1]
if Y is not None:
labels = labels[..., ::-1]
if nt > 1 and not unet:
labels[-1] = -labels[-1]
if do_3D and flip_z:
img = img[:, ::-1]
if Y is not None:
labels = labels[:,::-1]
if nt > 1 and not unet:
labels[-3] = -labels[-3]
for k in range(nchan):
if do_3D:
img0 = np.zeros((lz, xy[0], xy[1]), "float32")
for z in range(lz):
I = cv2.warpAffine(img[k, z], M, (xy[1], xy[0]),
flags=cv2.INTER_LINEAR)
img0[z] = I
if scale[n] != 1.0:
for y in range(imgi.shape[-2]):
imgi[n, k, :, y] = cv2.resize(img0[:, y], (xy[1], zcrop),
interpolation=cv2.INTER_LINEAR)
else:
imgi[n, k] = img0
else:
I = cv2.warpAffine(img[k], M, (xy[1], xy[0]), flags=cv2.INTER_LINEAR)
imgi[n, k] = I
if Y is not None:
for k in range(nt):
flag = cv2.INTER_NEAREST if k == 0 else cv2.INTER_LINEAR
if do_3D:
lbl0 = np.zeros((lz, xy[0], xy[1]), "float32")
for z in range(lz):
I = cv2.warpAffine(labels[k, z], M, (xy[1], xy[0]),
flags=flag)
lbl0[z] = I
if scale[n] != 1.0:
for y in range(lbl.shape[-2]):
lbl[n, k, :, y] = cv2.resize(lbl0[:, y], (xy[1], zcrop),
interpolation=flag)
else:
lbl[n, k] = lbl0
else:
lbl[n, k] = cv2.warpAffine(labels[k], M, (xy[1], xy[0]), flags=flag)
if nt > 1 and not unet:
v1 = lbl[n, -1].copy()
v2 = lbl[n, -2].copy()
lbl[n, -2] = (-v1 * np.sin(-theta) + v2 * np.cos(-theta))
lbl[n, -1] = (v1 * np.cos(-theta) + v2 * np.sin(-theta))
return imgi, lbl, scale