Spaces:
Running
Running
File size: 8,113 Bytes
e91e2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import json
import os
import time
import boto3
import openai
from dotenv import load_dotenv
from model_config import MODEL_TO_PROVIDER
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Load environment variables
load_dotenv()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Configuration
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
MODEL_STRING = "gpt-4.1-mini" # we default on gpt-4.1-mini
api_key = os.getenv("MODEL_API_KEY")
client = openai.OpenAI(api_key=api_key)
bedrock_runtime = boto3.client("bedrock-runtime", region_name="us-west-2")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Model switcher
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def set_model(model_id: str) -> None:
global MODEL_STRING
MODEL_STRING = model_id
print(f"Model changed to: {model_id}")
def set_provider(provider: str) -> None:
global PROVIDER
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# High-level Chat wrapper
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def chat(messages, persona):
provider = MODEL_TO_PROVIDER[MODEL_STRING]
if provider == "openai":
print("Using openai: ", MODEL_STRING)
system_prompt = None
if messages and messages[0].get("role") == "system":
system_prompt = messages[0]["content"]
messages = messages[1:]
t0 = time.time()
out = client.responses.create(
model=MODEL_STRING,
instructions=system_prompt,
input=messages, # messages=messages
max_output_tokens=500, # max_tokens=500,
temperature=0.5,
store=False, # keeps call stateless
)
dt = time.time() - t0
text = out.output_text.strip() # out.choices[0].message.content.strip()
tok_out = out.usage.output_tokens
tok_in = out.usage.input_tokens
total_tok = (
tok_out + tok_in
if tok_out is not None and tok_in is not None
else len(text.split())
)
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
elif provider == "anthropic":
print("Using anthropic: ", MODEL_STRING)
t0 = time.time()
claude_messages = [
{"role": m["role"], "content": m["content"]} for m in messages
]
response = bedrock_runtime.invoke_model(
modelId=MODEL_STRING,
contentType="application/json",
accept="application/json",
body=json.dumps(
{
"anthropic_version": "bedrock-2023-05-31",
"messages": claude_messages,
"max_tokens": 500,
"temperature": 0.5,
}
),
)
dt = time.time() - t0
body = json.loads(response["body"].read())
text = "".join(
part["text"] for part in body["content"] if part["type"] == "text"
).strip()
total_tok = len(text.split())
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
elif provider == "deepseek":
print("Using deepseek: ", MODEL_STRING)
t0 = time.time()
prompt = messages[-1]["content"]
formatted_prompt = (
f"<ο½beginβofβsentenceο½><ο½Userο½>{prompt}<ο½Assistantο½><think>\n"
)
response = bedrock_runtime.invoke_model(
modelId=MODEL_STRING,
contentType="application/json",
accept="application/json",
body=json.dumps(
{
"prompt": formatted_prompt,
"max_tokens": 500,
"temperature": 0.5,
"top_p": 0.9,
}
),
)
dt = time.time() - t0
body = json.loads(response["body"].read())
text = body["choices"][0]["text"].strip()
total_tok = len(text.split())
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
elif provider == "meta":
print("Using meta (LLaMA): ", MODEL_STRING)
t0 = time.time()
prompt = messages[-1]["content"]
# Format prompt in LLaMA-style instruction format
formatted_prompt = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n"
+ prompt.strip()
+ "\n<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n"
)
response = bedrock_runtime.invoke_model(
modelId=MODEL_STRING,
contentType="application/json",
accept="application/json",
body=json.dumps(
{"prompt": formatted_prompt, "max_gen_len": 512, "temperature": 0.5}
),
)
dt = time.time() - t0
body = json.loads(response["body"].read())
text = body.get("generation", "").strip()
total_tok = len(text.split())
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
elif provider == "mistral":
print("Using mistral: ", MODEL_STRING)
t0 = time.time()
prompt = messages[-1]["content"]
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
response = bedrock_runtime.invoke_model(
modelId=MODEL_STRING,
contentType="application/json",
accept="application/json",
body=json.dumps(
{"prompt": formatted_prompt, "max_tokens": 512, "temperature": 0.5}
),
)
dt = time.time() - t0
body = json.loads(response["body"].read())
text = body["outputs"][0]["text"].strip()
total_tok = len(text.split())
return text, dt, total_tok, (total_tok / dt if dt else total_tok)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Diagnostics / CLI test
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def check_credentials():
required = ["MODEL_API_KEY"]
missing = [var for var in required if not os.getenv(var)]
if missing:
print(f"Missing environment variables: {missing}")
return False
return True
def test_chat():
print("Testing chat...")
try:
test_messages = [
{
"role": "user",
"content": "Hello! Please respond with just 'Test successful'.",
}
]
text, latency, tokens, tps = chat(test_messages)
print(f"Test passed! {text} {latency:.2f}s {tokens} β‘ {tps:.1f} tps")
except Exception as e:
print(f"Test failed: {e}")
if __name__ == "__main__":
print("running diagnostics")
if check_credentials():
test_chat()
print("\nDone.")
|