File size: 8,113 Bytes
e91e2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import json
import os
import time

import boto3
import openai
from dotenv import load_dotenv
from model_config import MODEL_TO_PROVIDER

# ──────────────────────────────────────────────────────────────
# Load environment variables
load_dotenv()
# ──────────────────────────────────────────────────────────────

# ──────────────────────────────────────────────────────────────
# Configuration
# ──────────────────────────────────────────────────────────────
MODEL_STRING = "gpt-4.1-mini"  # we default on gpt-4.1-mini
api_key = os.getenv("MODEL_API_KEY")
client = openai.OpenAI(api_key=api_key)
bedrock_runtime = boto3.client("bedrock-runtime", region_name="us-west-2")


# ──────────────────────────────────────────────────────────────
# Model switcher
# ──────────────────────────────────────────────────────────────
def set_model(model_id: str) -> None:
    global MODEL_STRING
    MODEL_STRING = model_id
    print(f"Model changed to: {model_id}")


def set_provider(provider: str) -> None:
    global PROVIDER


# ──────────────────────────────────────────────────────────────
# High-level Chat wrapper
# ──────────────────────────────────────────────────────────────
def chat(messages, persona):
    provider = MODEL_TO_PROVIDER[MODEL_STRING]

    if provider == "openai":
        print("Using openai: ", MODEL_STRING)
        system_prompt = None
        if messages and messages[0].get("role") == "system":
            system_prompt = messages[0]["content"]
            messages = messages[1:]

        t0 = time.time()
        out = client.responses.create(
            model=MODEL_STRING,
            instructions=system_prompt,
            input=messages,  # messages=messages
            max_output_tokens=500,  #  max_tokens=500,
            temperature=0.5,
            store=False,  # keeps call stateless
        )

        dt = time.time() - t0

        text = out.output_text.strip()  # out.choices[0].message.content.strip()

        tok_out = out.usage.output_tokens
        tok_in = out.usage.input_tokens
        total_tok = (
            tok_out + tok_in
            if tok_out is not None and tok_in is not None
            else len(text.split())
        )

        return text, dt, total_tok, (total_tok / dt if dt else total_tok)
    elif provider == "anthropic":
        print("Using anthropic: ", MODEL_STRING)
        t0 = time.time()

        claude_messages = [
            {"role": m["role"], "content": m["content"]} for m in messages
        ]

        response = bedrock_runtime.invoke_model(
            modelId=MODEL_STRING,
            contentType="application/json",
            accept="application/json",
            body=json.dumps(
                {
                    "anthropic_version": "bedrock-2023-05-31",
                    "messages": claude_messages,
                    "max_tokens": 500,
                    "temperature": 0.5,
                }
            ),
        )

        dt = time.time() - t0
        body = json.loads(response["body"].read())

        text = "".join(
            part["text"] for part in body["content"] if part["type"] == "text"
        ).strip()
        total_tok = len(text.split())

        return text, dt, total_tok, (total_tok / dt if dt else total_tok)
    elif provider == "deepseek":
        print("Using deepseek: ", MODEL_STRING)
        t0 = time.time()

        prompt = messages[-1]["content"]

        formatted_prompt = (
            f"<|begin▁of▁sentence|><|User|>{prompt}<|Assistant|><think>\n"
        )

        response = bedrock_runtime.invoke_model(
            modelId=MODEL_STRING,
            contentType="application/json",
            accept="application/json",
            body=json.dumps(
                {
                    "prompt": formatted_prompt,
                    "max_tokens": 500,
                    "temperature": 0.5,
                    "top_p": 0.9,
                }
            ),
        )

        dt = time.time() - t0
        body = json.loads(response["body"].read())

        text = body["choices"][0]["text"].strip()
        total_tok = len(text.split())

        return text, dt, total_tok, (total_tok / dt if dt else total_tok)
    elif provider == "meta":
        print("Using meta (LLaMA): ", MODEL_STRING)
        t0 = time.time()

        prompt = messages[-1]["content"]

        # Format prompt in LLaMA-style instruction format
        formatted_prompt = (
            "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n"
            + prompt.strip()
            + "\n<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n"
        )

        response = bedrock_runtime.invoke_model(
            modelId=MODEL_STRING,
            contentType="application/json",
            accept="application/json",
            body=json.dumps(
                {"prompt": formatted_prompt, "max_gen_len": 512, "temperature": 0.5}
            ),
        )

        dt = time.time() - t0
        body = json.loads(response["body"].read())
        text = body.get("generation", "").strip()
        total_tok = len(text.split())

        return text, dt, total_tok, (total_tok / dt if dt else total_tok)
    elif provider == "mistral":
        print("Using mistral: ", MODEL_STRING)
        t0 = time.time()

        prompt = messages[-1]["content"]
        formatted_prompt = f"<s>[INST] {prompt} [/INST]"

        response = bedrock_runtime.invoke_model(
            modelId=MODEL_STRING,
            contentType="application/json",
            accept="application/json",
            body=json.dumps(
                {"prompt": formatted_prompt, "max_tokens": 512, "temperature": 0.5}
            ),
        )

        dt = time.time() - t0
        body = json.loads(response["body"].read())

        text = body["outputs"][0]["text"].strip()
        total_tok = len(text.split())

        return text, dt, total_tok, (total_tok / dt if dt else total_tok)


# ──────────────────────────────────────────────────────────────
# Diagnostics / CLI test
# ──────────────────────────────────────────────────────────────
def check_credentials():
    required = ["MODEL_API_KEY"]
    missing = [var for var in required if not os.getenv(var)]
    if missing:
        print(f"Missing environment variables: {missing}")
        return False
    return True


def test_chat():
    print("Testing chat...")
    try:
        test_messages = [
            {
                "role": "user",
                "content": "Hello! Please respond with just 'Test successful'.",
            }
        ]
        text, latency, tokens, tps = chat(test_messages)
        print(f"Test passed!  {text}  {latency:.2f}s  {tokens} ⚑ {tps:.1f} tps")
    except Exception as e:
        print(f"Test failed: {e}")


if __name__ == "__main__":
    print("running diagnostics")
    if check_credentials():
        test_chat()
    print("\nDone.")