RIFT-SVC-Nanami / infer.py
prismleong
update
32a5366
raw
history blame
31.9 kB
import click
import librosa
import numpy as np
import pyloudnorm as pyln
import torch
import torchaudio
from pathlib import Path
from tqdm import tqdm
from torch.amp import autocast
from rift_svc import DiT, RF
from rift_svc.feature_extractors import HubertModelWithFinalProj, RMSExtractor, get_mel_spectrogram
from rift_svc.nsf_hifigan import NsfHifiGAN
from rift_svc.rmvpe import RMVPE
from rift_svc.utils import linear_interpolate_tensor, post_process_f0, f0_ensemble, f0_ensemble_light, get_f0_pw, get_f0_pm
from slicer import Slicer
torch.set_grad_enabled(False)
def extract_state_dict(ckpt):
state_dict = ckpt['state_dict']
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('model.'):
new_k = k.replace('model.', '')
new_state_dict[new_k] = v
spk2idx = ckpt['hyper_parameters']['cfg']['spk2idx']
model_cfg = ckpt['hyper_parameters']['cfg']['model']
dataset_cfg = ckpt['hyper_parameters']['cfg']['dataset']
return new_state_dict, spk2idx, model_cfg, dataset_cfg
def load_models(model_path, device, use_fp16=True):
"""Load all required models and return them"""
click.echo("Loading models...")
# Load the conversion model
ckpt = torch.load(model_path, map_location='cpu')
state_dict, spk2idx, dit_cfg, dataset_cfg = extract_state_dict(ckpt)
transformer = DiT(num_speaker=len(spk2idx), **dit_cfg)
svc_model = RF(transformer=transformer)
svc_model.load_state_dict(state_dict)
svc_model = svc_model.to(device)
# Convert to half precision (float16) if specified and using CUDA
if use_fp16 and device != 'cpu':
svc_model = svc_model.half()
svc_model.eval()
# Load additional models
vocoder = NsfHifiGAN('pretrained/nsf_hifigan_44.1k_hop512_128bin_2024.02/model.ckpt').to(device)
rmvpe = RMVPE(model_path="pretrained/rmvpe/model.pt", hop_length=160, device=device)
hubert = HubertModelWithFinalProj.from_pretrained("pretrained/content-vec-best").to(device)
rms_extractor = RMSExtractor().to(device)
# Convert additional models to half precision if specified and using CUDA
if use_fp16 and device != 'cpu':
vocoder = vocoder.half()
hubert = hubert.half()
rms_extractor = rms_extractor.half()
# RMVPE model is handled separately as it may have custom implementation
return svc_model, vocoder, rmvpe, hubert, rms_extractor, spk2idx, dataset_cfg
def load_audio(file_path, target_sr):
"""Load and preprocess audio file"""
click.echo("Loading audio...")
audio, sr = torchaudio.load(file_path)
if sr != target_sr:
audio = torchaudio.functional.resample(audio, sr, target_sr)
if len(audio.shape) > 1:
audio = audio.mean(dim=0, keepdim=True)
return audio.numpy().squeeze()
def apply_fade(audio, fade_samples, fade_in=True):
"""Apply fade in/out using half of a Hanning window"""
fade_window = np.hanning(fade_samples * 2)
if fade_in:
fade_curve = fade_window[:fade_samples]
else:
fade_curve = fade_window[fade_samples:]
audio[:fade_samples] *= fade_curve
return audio
def extract_features(audio_segment, sample_rate, hop_length, rmvpe, hubert, rms_extractor,
device, key_shift=0, ds_cfg_strength=0.0, cvec_downsample_rate=2, target_loudness=-18.0,
robust_f0=0, use_fp16=True):
"""Extract all required features from an audio segment"""
# Normalize input segment
meter = pyln.Meter(sample_rate)
original_loudness = meter.integrated_loudness(audio_segment)
normalized_audio = pyln.normalize.loudness(audio_segment, original_loudness, target_loudness)
# Handle potential clipping
max_amp = np.max(np.abs(normalized_audio))
if max_amp > 1.0:
normalized_audio = normalized_audio * (0.99 / max_amp)
audio_tensor = torch.from_numpy(normalized_audio).float().unsqueeze(0).to(device)
audio_16khz = torch.from_numpy(librosa.resample(normalized_audio, orig_sr=sample_rate, target_sr=16000)).float().unsqueeze(0).to(device)
# Convert to half precision if specified and using CUDA
if use_fp16 and device.type != 'cpu':
audio_tensor = audio_tensor.half()
audio_16khz = audio_16khz.half()
# Extract mel spectrogram
mel = get_mel_spectrogram(
audio_tensor,
sampling_rate=sample_rate,
n_fft=2048,
num_mels=128,
hop_size=512,
win_size=2048,
fmin=40,
fmax=16000
).transpose(1, 2)
# Extract content vector
device_type = 'cuda' if device.type == 'cuda' else 'cpu'
with autocast(device_type=device_type, enabled=use_fp16):
cvec = hubert(audio_16khz)["last_hidden_state"].squeeze(0)
cvec = linear_interpolate_tensor(cvec, mel.shape[1])[None, :]
# Create bad_cvec (downsampled) for classifier-free guidance
if ds_cfg_strength > 0:
cvec_ds = cvec.clone()
# Downsample and then interpolate back, similar to dataset.py
cvec_ds = cvec_ds[0, ::2, :] # Take every other frame
cvec_ds = linear_interpolate_tensor(cvec_ds, cvec_ds.shape[0]//cvec_downsample_rate)
cvec_ds = linear_interpolate_tensor(cvec_ds, mel.shape[1])[None, :]
else:
cvec_ds = None
# Extract f0
if robust_f0 > 0:
# Parameters for F0 extraction
time_step = hop_length / sample_rate
f0_min = 40
f0_max = 1100
# Extract F0 using multiple methods
with autocast(device_type=device_type, enabled=use_fp16):
rmvpe_f0 = rmvpe.infer_from_audio(audio_tensor, sample_rate=sample_rate, device=device)
rmvpe_f0 = post_process_f0(rmvpe_f0, sample_rate, hop_length, mel.shape[1], silence_front=0.0, cut_last=False)
pw_f0 = get_f0_pw(normalized_audio, sample_rate, time_step, f0_min, f0_max)
pmac_f0 = get_f0_pm(normalized_audio, sample_rate, time_step, f0_min, f0_max)
if robust_f0 == 1:
# Level 1: Light ensemble that preserves expressiveness
with autocast(device_type=device_type, enabled=use_fp16):
rms_np = rms_extractor(audio_tensor).squeeze().cpu().numpy()
f0 = f0_ensemble_light(rmvpe_f0, pw_f0, pmac_f0, rms=rms_np)
else:
# Level 2: Strong ensemble with more filtering
f0 = f0_ensemble(rmvpe_f0, pw_f0, pmac_f0)
else:
# Level 0: Use only RMVPE for F0 extraction (original method)
device_type = 'cuda' if device.type == 'cuda' else 'cpu'
with autocast(device_type=device_type, enabled=use_fp16):
f0 = rmvpe.infer_from_audio(audio_tensor, sample_rate=sample_rate, device=device)
f0 = post_process_f0(f0, sample_rate, hop_length, mel.shape[1], silence_front=0.0, cut_last=False)
if key_shift != 0:
f0 = f0 * 2 ** (key_shift / 12)
f0 = torch.from_numpy(f0).float().to(device)[None, :]
# Extract RMS
rms = rms_extractor(audio_tensor)
return mel, cvec, cvec_ds, f0, rms, original_loudness
def run_inference(
model, mel, cvec, f0, rms, cvec_ds, spk_id,
infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
sliced_inference=False, use_fp16=True, frame_lengths=None
):
"""Run the actual inference through the model"""
device_type = 'cuda' if mel.device.type == 'cuda' else 'cpu'
if frame_lengths is not None:
# Use batch inference with frame lengths
with autocast(device_type=device_type, enabled=use_fp16):
mel_out, _ = model.sample(
src_mel=mel,
spk_id=spk_id,
f0=f0,
rms=rms,
cvec=cvec,
steps=infer_steps,
bad_cvec=cvec_ds,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
frame_len=frame_lengths,
)
return mel_out
elif sliced_inference:
# Use sliced inference for long segments
sliced_len = 256
mel_crossfade_len = 8 # Number of frames to crossfade in mel domain
# If the segment is shorter than one slice, just process it directly
if mel.shape[1] <= sliced_len:
with autocast(device_type=device_type, enabled=use_fp16):
mel_out, _ = model.sample(
src_mel=mel,
spk_id=spk_id,
f0=f0,
rms=rms,
cvec=cvec,
steps=infer_steps,
bad_cvec=cvec_ds,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
)
return mel_out
# Create a tensor to hold the full output with crossfading
full_mel_out = torch.zeros_like(mel)
# Process each slice
for i in range(0, mel.shape[1], sliced_len - mel_crossfade_len):
# Determine slice boundaries
start_idx = i
end_idx = min(i + sliced_len, mel.shape[1])
# Skip if we're at the end
if start_idx >= mel.shape[1]:
break
# Extract slices for this window
mel_slice = mel[:, start_idx:end_idx, :]
cvec_slice = cvec[:, start_idx:end_idx, :]
f0_slice = f0[:, start_idx:end_idx]
rms_slice = rms[:, start_idx:end_idx]
# Slice the bad_cvec if it exists
cvec_ds_slice = None
if cvec_ds is not None:
cvec_ds_slice = cvec_ds[:, start_idx:end_idx, :]
# Process with model using mixed precision if enabled
with autocast(device_type=device_type, enabled=use_fp16):
mel_out_slice, _ = model.sample(
src_mel=mel_slice,
spk_id=spk_id,
f0=f0_slice,
rms=rms_slice,
cvec=cvec_slice,
steps=infer_steps,
bad_cvec=cvec_ds_slice,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
)
# Create crossfade weights
slice_len = end_idx - start_idx
# Apply different strategies depending on position
if i == 0: # First slice
# No crossfade at the beginning
weights = torch.ones((1, slice_len, 1), device=mel.device)
if i + sliced_len < mel.shape[1]: # If not the last slice too
# Fade out at the end - use the minimum of slice_len and mel_crossfade_len
actual_crossfade_len = min(mel_crossfade_len, slice_len)
if actual_crossfade_len > 0: # Only apply if we have space
fade_out = torch.linspace(1, 0, actual_crossfade_len, device=mel.device)
weights[:, -actual_crossfade_len:, :] = fade_out.view(1, -1, 1)
elif end_idx >= mel.shape[1]: # Last slice
# Fade in at the beginning - use the minimum of slice_len and mel_crossfade_len
weights = torch.ones((1, slice_len, 1), device=mel.device)
actual_crossfade_len = min(mel_crossfade_len, slice_len)
if actual_crossfade_len > 0: # Only apply if we have space
fade_in = torch.linspace(0, 1, actual_crossfade_len, device=mel.device)
weights[:, :actual_crossfade_len, :] = fade_in.view(1, -1, 1)
else: # Middle slice
# Crossfade both ends
weights = torch.ones((1, slice_len, 1), device=mel.device)
# Fade in at the beginning
if mel_crossfade_len > 0: # Only apply if we have space
fade_in = torch.linspace(0, 1, mel_crossfade_len, device=mel.device)
weights[:, :mel_crossfade_len, :] = fade_in.view(1, -1, 1)
# Fade out at the end
if mel_crossfade_len > 0: # Only apply if we have space
fade_out = torch.linspace(1, 0, mel_crossfade_len, device=mel.device)
weights[:, -mel_crossfade_len:, :] = fade_out.view(1, -1, 1)
# Apply weighted update to the output
full_mel_out[:, start_idx:end_idx, :] += weights * mel_out_slice
# Return the full crossfaded output
mel_out = full_mel_out
else:
# Process the entire segment at once with mixed precision if enabled
with autocast(device_type=device_type, enabled=use_fp16):
mel_out, _ = model.sample(
src_mel=mel,
spk_id=spk_id,
f0=f0,
rms=rms,
cvec=cvec,
steps=infer_steps,
bad_cvec=cvec_ds,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
)
return mel_out
def generate_audio(vocoder, mel_out, f0, original_loudness=None, restore_loudness=True, use_fp16=True):
"""Generate audio from mel spectrogram using vocoder"""
# Use mixed precision for vocoder inference if enabled
device_type = 'cuda' if mel_out.device.type == 'cuda' else 'cpu'
with autocast(device_type=device_type, enabled=use_fp16):
audio_out = vocoder(mel_out.transpose(1, 2), f0)
audio_out = audio_out.squeeze().cpu().numpy()
if restore_loudness and original_loudness is not None:
# Restore original loudness
meter = pyln.Meter(44100)
audio_out_loudness = meter.integrated_loudness(audio_out)
audio_out = pyln.normalize.loudness(audio_out, audio_out_loudness, original_loudness)
# Handle clipping
max_amp = np.max(np.abs(audio_out))
if max_amp > 1.0:
audio_out = audio_out * (0.99 / max_amp)
return audio_out
def process_segment(
audio_segment,
svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift=0,
infer_steps=32,
ds_cfg_strength=0.0,
spk_cfg_strength=0.0,
skip_cfg_strength=0.0,
cfg_skip_layers=None,
cfg_rescale=0.7,
cvec_downsample_rate=2,
target_loudness=-18.0,
restore_loudness=True,
sliced_inference=False,
robust_f0=0,
use_fp16=True
):
"""Process a single audio segment and return the converted audio"""
# Extract features
mel, cvec, cvec_ds, f0, rms, original_loudness = extract_features(
audio_segment, sample_rate, hop_length, rmvpe, hubert, rms_extractor,
device, key_shift, ds_cfg_strength, cvec_downsample_rate, target_loudness,
robust_f0, use_fp16
)
# Prepare speaker ID - convert to tensor
spk_id = torch.LongTensor([speaker_id]).to(device)
# Run inference to generate output mel spectrogram
mel_out = run_inference(
model=svc_model,
mel=mel,
cvec=cvec,
f0=f0,
rms=rms,
cvec_ds=cvec_ds,
spk_id=spk_id,
infer_steps=infer_steps,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
sliced_inference=sliced_inference,
use_fp16=use_fp16
)
# Generate audio
audio_out = generate_audio(
vocoder, mel_out, f0,
original_loudness if restore_loudness else None,
restore_loudness, use_fp16
)
return audio_out
def pad_tensor_to_length(tensor, length):
"""Pad a tensor to the specified length along the sequence dimension (dim=1)"""
curr_len = tensor.shape[1]
if curr_len >= length:
return tensor
pad_len = length - curr_len
if tensor.dim() == 2:
padding = (0, pad_len)
elif tensor.dim() == 3:
padding = (0, 0, 0, pad_len)
else:
raise ValueError(f"Unsupported tensor dimension: {tensor.dim()}")
padded = torch.nn.functional.pad(tensor, padding, "constant", 0)
return padded
def batch_process_segments(
segments_with_pos,
svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift=0,
infer_steps=32,
ds_cfg_strength=0.0,
spk_cfg_strength=0.0,
skip_cfg_strength=0.0,
cfg_skip_layers=None,
cfg_rescale=0.7,
cvec_downsample_rate=2,
target_loudness=-18.0,
restore_loudness=True,
robust_f0=0,
use_fp16=True,
batch_size=1,
gr_progress=None,
progress_desc=None
):
"""Process audio segments in batches for faster inference"""
if batch_size <= 1:
results = []
for i, (start_sample, chunk) in enumerate(tqdm(segments_with_pos, desc="Processing segments")):
if gr_progress is not None:
gr_progress(0.2 + (0.7 * (i / len(segments_with_pos))), desc=progress_desc.format(i+1, len(segments_with_pos)))
audio_out = process_segment(
chunk, svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift, infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
cvec_downsample_rate, target_loudness, restore_loudness,
robust_f0, use_fp16
)
results.append((start_sample, audio_out, len(chunk)))
return results
sorted_with_idx = sorted(enumerate(segments_with_pos), key=lambda x: len(x[1][1]))
sorted_segments = []
original_indices = []
for orig_idx, (pos, chunk) in sorted_with_idx:
original_indices.append(orig_idx)
sorted_segments.append((pos, chunk))
batched_segments = [sorted_segments[i:i + batch_size] for i in range(0, len(sorted_segments), batch_size)]
all_results = []
for batch_idx, batch in enumerate(tqdm(batched_segments, desc="Processing batches")):
if gr_progress is not None:
gr_progress(
0.2 + (0.7 * (batch_idx / len(batched_segments))),
desc=progress_desc.format(batch_idx+1, len(batched_segments)))
batch_start_samples = [pos for pos, _ in batch]
batch_chunks = [chunk for _, chunk in batch]
batch_lengths = [len(chunk) for chunk in batch_chunks]
batch_features = []
for chunk in batch_chunks:
mel, cvec, cvec_ds, f0, rms, original_loudness = extract_features(
chunk, sample_rate, hop_length, rmvpe, hubert, rms_extractor,
device, key_shift, ds_cfg_strength, cvec_downsample_rate, target_loudness,
robust_f0, use_fp16
)
batch_features.append({
'mel': mel,
'cvec': cvec,
'cvec_ds': cvec_ds,
'f0': f0,
'rms': rms,
'original_loudness': original_loudness,
'length': mel.shape[1]
})
max_length = max(feat['length'] for feat in batch_features)
padded_mels = []
padded_cvecs = []
padded_f0s = []
padded_rmss = []
frame_lengths = []
original_loudness_values = []
if ds_cfg_strength > 0:
padded_cvec_ds = []
for feat in batch_features:
curr_len = feat['length']
frame_lengths.append(curr_len)
padded_mels.append(pad_tensor_to_length(feat['mel'], max_length))
padded_cvecs.append(pad_tensor_to_length(feat['cvec'], max_length))
padded_f0s.append(pad_tensor_to_length(feat['f0'], max_length))
padded_rmss.append(pad_tensor_to_length(feat['rms'], max_length))
if ds_cfg_strength > 0:
padded_cvec_ds.append(pad_tensor_to_length(feat['cvec_ds'], max_length))
original_loudness_values.append(feat['original_loudness'])
batched_mel = torch.cat(padded_mels, dim=0)
batched_cvec = torch.cat(padded_cvecs, dim=0)
batched_f0 = torch.cat(padded_f0s, dim=0)
batched_rms = torch.cat(padded_rmss, dim=0)
if ds_cfg_strength > 0:
batched_cvec_ds = torch.cat(padded_cvec_ds, dim=0)
else:
batched_cvec_ds = None
frame_lengths = torch.tensor(frame_lengths, device=device)
batch_spk_id = torch.LongTensor([speaker_id] * len(batch)).to(device)
with torch.no_grad():
mel_out = run_inference(
model=svc_model,
mel=batched_mel,
cvec=batched_cvec,
f0=batched_f0,
rms=batched_rms,
cvec_ds=batched_cvec_ds,
spk_id=batch_spk_id,
infer_steps=infer_steps,
ds_cfg_strength=ds_cfg_strength,
spk_cfg_strength=spk_cfg_strength,
skip_cfg_strength=skip_cfg_strength,
cfg_skip_layers=cfg_skip_layers,
cfg_rescale=cfg_rescale,
frame_lengths=frame_lengths,
use_fp16=use_fp16
)
with autocast(device_type='cuda' if device.type == 'cuda' else 'cpu', enabled=use_fp16):
audio_out = vocoder(mel_out.transpose(1, 2), batched_f0)
for i in range(len(batch)):
expected_audio_length = batch_lengths[i]
curr_audio = audio_out[i].squeeze().cpu().numpy()
if len(curr_audio) > expected_audio_length:
curr_audio = curr_audio[:expected_audio_length]
elif len(curr_audio) < expected_audio_length:
curr_audio = np.pad(curr_audio, (0, expected_audio_length - len(curr_audio)), 'constant')
if restore_loudness:
meter = pyln.Meter(44100, block_size=0.1)
curr_loudness = meter.integrated_loudness(curr_audio)
curr_audio = pyln.normalize.loudness(curr_audio, curr_loudness, original_loudness_values[i])
max_amp = np.max(np.abs(curr_audio))
if max_amp > 1.0:
curr_audio = curr_audio * (0.99 / max_amp)
expected_length = batch_lengths[i]
all_results.append((batch_idx, i, batch_start_samples[i], curr_audio, expected_length, original_indices[batch_size * batch_idx + i]))
all_results.sort(key=lambda x: x[5])
return [(pos, audio, length) for _, _, pos, audio, length, _ in all_results]
@click.command()
@click.option('--model', type=click.Path(exists=True), required=True, help='Path to model checkpoint')
@click.option('--input', type=click.Path(exists=True), required=True, help='Input audio file')
@click.option('--output', type=click.Path(), required=True, help='Output audio file')
@click.option('--speaker', type=str, required=True, help='Target speaker')
@click.option('--key-shift', type=int, default=0, help='Pitch shift in semitones')
@click.option('--device', type=str, default=None, help='Device to use (cuda/cpu)')
@click.option('--infer-steps', type=int, default=32, help='Number of inference steps')
@click.option('--ds-cfg-strength', type=float, default=0.0, help='Downsampled content vector guidance strength')
@click.option('--spk-cfg-strength', type=float, default=0.0, help='Speaker guidance strength')
@click.option('--skip-cfg-strength', type=float, default=0.0, help='Skip layer guidance strength')
@click.option('--cfg-skip-layers', type=int, default=None, help='Layer to skip for classifier-free guidance')
@click.option('--cfg-rescale', type=float, default=0.7, help='Classifier-free guidance rescale factor')
@click.option('--cvec-downsample-rate', type=int, default=2, help='Downsampling rate for bad_cvec creation')
@click.option('--target-loudness', type=float, default=-18.0, help='Target loudness in LUFS for normalization')
@click.option('--restore-loudness', default=True, help='Restore loudness to original')
@click.option('--fade-duration', type=float, default=20.0, help='Fade duration in milliseconds')
@click.option('--sliced-inference', is_flag=True, default=False, help='Use sliced inference for processing long segments')
@click.option('--robust-f0', type=int, default=0, help='Level of robust f0 filtering (0=none, 1=light, 2=aggressive)')
@click.option('--slicer-threshold', type=float, default=-30.0, help='Threshold for audio slicing in dB')
@click.option('--slicer-min-length', type=int, default=3000, help='Minimum length of audio segments in milliseconds')
@click.option('--slicer-min-interval', type=int, default=100, help='Minimum interval between audio segments in milliseconds')
@click.option('--slicer-hop-size', type=int, default=10, help='Hop size for audio slicing in milliseconds')
@click.option('--slicer-max-sil-kept', type=int, default=200, help='Maximum silence kept in milliseconds')
@click.option('--use-fp16', is_flag=True, default=True, help='Use float16 precision for faster inference')
@click.option('--batch-size', type=int, default=1, help='Batch size for parallel inference')
def main(
model,
input,
output,
speaker,
key_shift,
device,
infer_steps,
ds_cfg_strength,
spk_cfg_strength,
skip_cfg_strength,
cfg_skip_layers,
cfg_rescale,
cvec_downsample_rate,
target_loudness,
restore_loudness,
fade_duration,
sliced_inference,
robust_f0,
slicer_threshold,
slicer_min_length,
slicer_min_interval,
slicer_hop_size,
slicer_max_sil_kept,
use_fp16,
batch_size
):
"""Convert the voice in an audio file to a target speaker."""
# Setup device
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
# Load models
svc_model, vocoder, rmvpe, hubert, rms_extractor, spk2idx, dataset_cfg = load_models(model, device, use_fp16)
try:
speaker_id = spk2idx[speaker]
except KeyError:
raise ValueError(f"Speaker {speaker} not found in the model's speaker list, valid speakers are {spk2idx.keys()}")
# Get config from loaded model
hop_length = 512
sample_rate = 44100
# Load audio
audio = load_audio(input, sample_rate)
# Initialize Slicer
slicer = Slicer(
sr=sample_rate,
threshold=slicer_threshold,
min_length=slicer_min_length,
min_interval=slicer_min_interval,
hop_size=slicer_hop_size,
max_sil_kept=slicer_max_sil_kept
)
# Step (1): Use slicer to segment the input audio and get positions
click.echo("Slicing audio...")
segments_with_pos = slicer.slice(audio) # Now returns list of (start_pos, chunk)
if restore_loudness:
click.echo(f"Will restore loudness to original")
# Calculate fade size in samples
fade_samples = int(fade_duration * sample_rate / 1000)
# Process segments
if batch_size > 1:
click.echo(f"Processing {len(segments_with_pos)} segments with batch size {batch_size}...")
result_audio = np.zeros(len(audio) + fade_samples) # Extra space for potential overlap
with torch.no_grad():
processed_segments = batch_process_segments(
segments_with_pos, svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift, infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
cvec_downsample_rate, target_loudness, restore_loudness,
robust_f0, use_fp16, batch_size
)
for idx, (start_sample, audio_out, expected_length) in enumerate(processed_segments):
# Apply fades
if idx > 0: # Not first segment
audio_out = apply_fade(audio_out.copy(), fade_samples, fade_in=True)
result_audio[start_sample:start_sample + fade_samples] *= \
np.linspace(1, 0, fade_samples) # Fade out previous
if idx < len(processed_segments) - 1: # Not last segment
audio_out[-fade_samples:] *= np.linspace(1, 0, fade_samples) # Fade out
# Add to result
result_audio[start_sample:start_sample + len(audio_out)] += audio_out
else:
# Original processing method using sliced_inference
click.echo(f"Processing {len(segments_with_pos)} segments...")
result_audio = np.zeros(len(audio) + fade_samples) # Extra space for potential overlap
with torch.no_grad():
for idx, (start_sample, chunk) in enumerate(tqdm(segments_with_pos)):
# Process the segment
audio_out = process_segment(
chunk, svc_model, vocoder, rmvpe, hubert, rms_extractor,
speaker_id, sample_rate, hop_length, device,
key_shift, infer_steps, ds_cfg_strength, spk_cfg_strength,
skip_cfg_strength, cfg_skip_layers, cfg_rescale,
cvec_downsample_rate, target_loudness, restore_loudness, sliced_inference,
robust_f0, use_fp16
)
# Ensure consistent length
expected_length = len(chunk)
if len(audio_out) > expected_length:
audio_out = audio_out[:expected_length]
elif len(audio_out) < expected_length:
audio_out = np.pad(audio_out, (0, expected_length - len(audio_out)), 'constant')
# Apply fades
if idx > 0: # Not first segment
audio_out = apply_fade(audio_out.copy(), fade_samples, fade_in=True)
result_audio[start_sample:start_sample + fade_samples] *= \
np.linspace(1, 0, fade_samples) # Fade out previous
if idx < len(segments_with_pos) - 1: # Not last segment
audio_out[-fade_samples:] *= np.linspace(1, 0, fade_samples) # Fade out
# Add to result
result_audio[start_sample:start_sample + len(audio_out)] += audio_out
# Trim any extra padding
result_audio = result_audio[:len(audio)]
# Save output
click.echo("Saving output...")
output_path = Path(output)
output_path.parent.mkdir(parents=True, exist_ok=True)
torchaudio.save(output, torch.from_numpy(result_audio).unsqueeze(0), sample_rate)
click.echo("Done!")
if __name__ == '__main__':
main()