VibeThinker / README.md
VladBoyko's picture
Update README.md
582b310 verified
---
title: VibeThinker-1.5B Competitive Coding Assistant
emoji: 🧠
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
license: mit
---
# 🧠 VibeThinker-1.5B Competitive Coding Assistant
An interactive demo of **VibeThinker-1.5B** optimized for competitive programming challenges.
## ⚑ Performance Highlights
- **AIME24**: 80.3 (surpasses DeepSeek R1's 79.8)
- **AIME25**: 74.4 (vs DeepSeek R1's 70.0)
- **LiveCodeBench V6**: 51.1 (competitive coding)
- **Training Cost**: Only $7,800 USD
- **Parameters**: 1.5B (400Γ— smaller than DeepSeek R1)
## 🎯 What It's Best At
βœ… **Competitive Programming**: LeetCode, Codeforces, AtCoder-style algorithm problems
βœ… **Python Coding Challenges**: Problems with clear input/output specifications
βœ… **Mathematical Reasoning**: Complex proofs and formal reasoning tasks
βœ… **Algorithm Design**: Dynamic programming, graph algorithms, optimization problems
## ⚠️ Important Limitations
This model is **specialized for competitive programming**, not general software development:
❌ Not suitable for: Building applications, debugging real codebases, using specific libraries
❌ Limited knowledge: Low encyclopedic knowledge, Python-focused training
❌ Overthinking tendency: May generate verbose reasoning for simple tasks
❌ Narrow scope: Optimized for benchmark-style problems, not production code
*See [community feedback analysis](https://www.reddit.com/r/LocalLLaMA/comments/1ou1emx/) for detailed real-world testing insights*
## πŸš€ Features
- **🧠 Intelligent Parsing**: Automatic separation of reasoning and solution
- **πŸ“Š Token Tracking**: Real-time stats on generation time and token usage
- **πŸ’» Clean Code Display**: Syntax-highlighted, copyable/downloadable code blocks
- **πŸ“± Responsive Design**: Modern UI with collapsible reasoning sections
- **🎨 High Contrast**: Readable output with dark code blocks on white background
- **πŸ”„ Loop Detection**: Automatically detects and truncates repetitive output
## πŸ› οΈ Technical Details
### Model Information
- **Base Model**: Qwen2.5-Math-1.5B
- **Training Method**: Spectrum-to-Signal Principle (SSP)
- Supervised Fine-Tuning (SFT) for solution diversity
- Reinforcement Learning (RL) for correct reasoning paths
- **Inference Engine**: Standard `transformers` library (PyTorch)
- **Token Efficiency**: Configurable thinking depth via prompt hints
### Hardware Requirements
- **Recommended**: Nvidia T4 - small (16 GB VRAM)
- **Memory Usage**: ~3-4 GB VRAM (1.5B params in float16)
- **Cost**: $0.40/hour on HuggingFace Spaces
### Implementation
```python
# Clean, simple transformers implementation
- torch.float16 for efficiency
- device_map="auto" for automatic GPU placement
- Repetition penalty (1.1) to reduce loops
- Automatic loop detection and truncation
```
## πŸ“– Usage Tips
### For Best Results:
1. **Frame problems competitively**: Clear input/output, edge cases, constraints
2. **Adjust thinking tokens**:
- 1024-2048 for quick, simple problems
- 3072-4096 for standard algorithm challenges
- 6144-8192 for complex multi-step reasoning
3. **Use Python**: Model trained primarily on Python code
4. **Specify format**: Request specific output format (function, class, test cases)
### Example Prompts:
```
βœ… Good: "Write a function to find the longest increasing subsequence.
Include time/space complexity analysis and test with [10,9,2,5,3,7,101,18]"
βœ… Good: "Implement Dijkstra's algorithm with a min-heap. Handle disconnected graphs."
❌ Poor: "Debug my React app" (not its purpose)
❌ Poor: "How do I use pandas?" (limited library knowledge)
```
## πŸ”— Resources
- **Model**: [WeiboAI/VibeThinker-1.5B](https://huggingface.co/WeiboAI/VibeThinker-1.5B)
- **Paper**: [arXiv:2511.06221](https://arxiv.org/abs/2511.06221)
- **GitHub**: [WeiboAI/VibeThinker](https://github.com/WeiboAI/VibeThinker)
- **License**: MIT
## πŸ™ Credits
Developed by **WeiboAI**. This Space demonstrates the model with a clean interface and enhanced user experience.
## πŸ“ Citation
```bibtex
@article{vibethinker2025,
title={Tiny Model, Big Logic: Diversity-Driven Optimization Elicits Large-Model Reasoning Ability in VibeThinker-1.5B},
author={WeiboAI Team},
journal={arXiv preprint arXiv:2511.06221},
year={2025}
}
```