Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, File, UploadFile | |
| from transformers import ViTImageProcessor, ViTForImageClassification | |
| from PIL import Image | |
| import torch | |
| import io | |
| MODEL_NAME = "ahmed-masoud/sign_language_translator" | |
| try: | |
| processor = ViTImageProcessor.from_pretrained(MODEL_NAME) | |
| model = ViTForImageClassification.from_pretrained(MODEL_NAME) | |
| print(f"Modelo '{MODEL_NAME}' cargado") | |
| except Exception as e: | |
| print(f"Error al cargar el modelo {e}") | |
| model = None | |
| processor = None | |
| app = FastAPI(title="API de ASL con modelo de HF") | |
| async def translate_sign(file: UploadFile = File(...)): | |
| if not model or not processor: | |
| return {"error": "Modelo no disponible."} | |
| image_bytes = await file.read() | |
| image = Image.open(io.BytesIO(image_bytes)) | |
| inputs = processor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| predicted_class_idx = logits.argmax(-1).item() | |
| predicted_label = model.config.id2label[predicted_class_idx] | |
| return {"prediction": predicted_label} | |
| def read_root(): | |
| return {"message": "API ok. Usa el endpoint /predict/ para predecir."} | |