Spaces:
Sleeping
Sleeping
Alex Vega
commited on
Commit
·
e373c5a
1
Parent(s):
212f1ad
up
Browse files
main.py
CHANGED
|
@@ -1,23 +1,27 @@
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile
|
| 2 |
-
from transformers import
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import io
|
| 6 |
|
| 7 |
-
MODEL_NAME = "
|
| 8 |
|
| 9 |
|
| 10 |
try:
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
-
model =
|
| 14 |
|
| 15 |
-
print(f"Modelo '{MODEL_NAME}' cargado")
|
|
|
|
| 16 |
|
| 17 |
except Exception as e:
|
| 18 |
-
print(f"Error al cargar el modelo {e}")
|
|
|
|
| 19 |
model = None
|
| 20 |
processor = None
|
|
|
|
| 21 |
|
| 22 |
app = FastAPI(title="API de ASL con modelo de HF")
|
| 23 |
|
|
@@ -25,24 +29,46 @@ app = FastAPI(title="API de ASL con modelo de HF")
|
|
| 25 |
@app.post("/predict/")
|
| 26 |
async def translate_sign(file: UploadFile = File(...)):
|
| 27 |
if not model or not processor:
|
| 28 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
@app.get("/")
|
| 47 |
def read_root():
|
| 48 |
return {"message": "API ok. Usa el endpoint /predict/ para predecir."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile
|
| 2 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import io
|
| 6 |
|
| 7 |
+
MODEL_NAME = "prithivMLmods/Alphabet-Sign-Language-Detection"
|
| 8 |
|
| 9 |
|
| 10 |
try:
|
| 11 |
+
print(f"Cargando modelo '{MODEL_NAME}'...")
|
| 12 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
| 13 |
|
| 14 |
+
model = SiglipForImageClassification.from_pretrained(MODEL_NAME)
|
| 15 |
|
| 16 |
+
print(f"Modelo '{MODEL_NAME}' cargado exitosamente")
|
| 17 |
+
model_loaded = True
|
| 18 |
|
| 19 |
except Exception as e:
|
| 20 |
+
print(f"Error al cargar el modelo: {e}")
|
| 21 |
+
print("Usando modelo de ejemplo. Para uso real, necesitas un modelo específico de ASL.")
|
| 22 |
model = None
|
| 23 |
processor = None
|
| 24 |
+
model_loaded = False
|
| 25 |
|
| 26 |
app = FastAPI(title="API de ASL con modelo de HF")
|
| 27 |
|
|
|
|
| 29 |
@app.post("/predict/")
|
| 30 |
async def translate_sign(file: UploadFile = File(...)):
|
| 31 |
if not model or not processor:
|
| 32 |
+
return {
|
| 33 |
+
"error": "Modelo no disponible.",
|
| 34 |
+
"message": "El modelo específico de ASL no pudo cargarse. Verifica que el modelo existe en Hugging Face.",
|
| 35 |
+
"model_attempted": MODEL_NAME
|
| 36 |
+
}
|
| 37 |
|
| 38 |
+
try:
|
| 39 |
+
image_bytes = await file.read()
|
| 40 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 41 |
|
| 42 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 43 |
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs = model(**inputs)
|
| 46 |
+
logits = outputs.logits
|
| 47 |
+
|
| 48 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
| 49 |
|
| 50 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 51 |
+
confidence = probs[0][predicted_class_idx].item()
|
| 52 |
+
|
| 53 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
| 54 |
|
| 55 |
+
return {
|
| 56 |
+
"prediction": predicted_label,
|
| 57 |
+
"confidence": round(confidence * 100, 2)
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
return {"error": f"Error al procesar la imagen: {str(e)}"}
|
| 62 |
|
| 63 |
|
| 64 |
@app.get("/")
|
| 65 |
def read_root():
|
| 66 |
return {"message": "API ok. Usa el endpoint /predict/ para predecir."}
|
| 67 |
+
|
| 68 |
+
@app.get("/status/")
|
| 69 |
+
def get_status():
|
| 70 |
+
return {
|
| 71 |
+
"model_loaded": model_loaded,
|
| 72 |
+
"model_name": MODEL_NAME,
|
| 73 |
+
"message": "Modelo cargado correctamente" if model_loaded else "Modelo no disponible"
|
| 74 |
+
}
|