Spaces:
Sleeping
Sleeping
File size: 5,161 Bytes
2dc6653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
#!/usr/bin/env python3
"""
Diagnostic script to test inference pipeline components
Run this in the Space environment to identify issues
"""
import sys
import os
from datetime import datetime
print("="*60)
print("FBMC CHRONOS-2 DIAGNOSTIC SCRIPT")
print("="*60)
# Test 1: Python environment
print("\n[1] Python Environment")
print(f" Python version: {sys.version}")
print(f" Python path: {sys.executable}")
# Test 2: Import dependencies
print("\n[2] Importing Dependencies")
try:
import torch
print(f" PyTorch: {torch.__version__}")
print(f" CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f" CUDA device: {torch.cuda.get_device_name(0)}")
except Exception as e:
print(f" PyTorch ERROR: {e}")
try:
import polars as pl
print(f" Polars: {pl.__version__}")
except Exception as e:
print(f" Polars ERROR: {e}")
try:
import numpy as np
print(f" NumPy: {np.__version__}")
except Exception as e:
print(f" NumPy ERROR: {e}")
try:
from chronos import ChronosPipeline
print(f" Chronos: OK")
except Exception as e:
print(f" Chronos ERROR: {e}")
try:
from datasets import load_dataset
print(f" HF Datasets: OK")
except Exception as e:
print(f" HF Datasets ERROR: {e}")
# Test 3: Environment variables
print("\n[3] Environment Variables")
print(f" HF_TOKEN: {'SET' if os.getenv('HF_TOKEN') else 'NOT SET'}")
print(f" DEVICE: {os.getenv('DEVICE', 'cuda')}")
# Test 4: Load dataset
print("\n[4] Loading Dataset")
try:
from datasets import load_dataset
hf_token = os.getenv("HF_TOKEN")
print(f" Loading evgueni-p/fbmc-features-24month...")
dataset = load_dataset(
"evgueni-p/fbmc-features-24month",
split="train",
token=hf_token
)
print(f" Dataset rows: {len(dataset)}")
# Convert to Polars
import polars as pl
df = pl.from_arrow(dataset.data.table)
print(f" Polars shape: {df.shape}")
# Check for target columns
target_cols = [col for col in df.columns if col.startswith('target_border_')]
print(f" Target borders: {len(target_cols)}")
if target_cols:
print(f" First border: {target_cols[0]}")
except Exception as e:
print(f" Dataset ERROR: {e}")
import traceback
traceback.print_exc()
# Test 5: Load Chronos model
print("\n[5] Loading Chronos Model")
try:
from chronos import ChronosPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f" Device: {device}")
print(f" Loading amazon/chronos-t5-large...")
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-large",
device_map=device,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
)
print(f" Model loaded successfully!")
# Test inference with dummy data
print(f"\n Testing inference with dummy data...")
import numpy as np
dummy_context = np.random.randn(512).astype(np.float32)
forecast = pipeline.predict(
context=dummy_context,
prediction_length=24,
num_samples=5
)
forecast_np = forecast.numpy()
print(f" Forecast shape: {forecast_np.shape}")
# Test quantile calculation
median = np.median(forecast_np, axis=0)
q10 = np.quantile(forecast_np, 0.1, axis=0)
q90 = np.quantile(forecast_np, 0.9, axis=0)
print(f" Quantiles calculated successfully!")
print(f" Median shape: {median.shape}")
print(f" Q10 shape: {q10.shape}")
print(f" Q90 shape: {q90.shape}")
except Exception as e:
print(f" Model ERROR: {e}")
import traceback
traceback.print_exc()
# Test 6: Test dynamic_forecast import
print("\n[6] Testing Module Imports")
try:
from src.forecasting.dynamic_forecast import DynamicForecast
print(f" DynamicForecast: OK")
except Exception as e:
print(f" DynamicForecast ERROR: {e}")
import traceback
traceback.print_exc()
try:
from src.forecasting.feature_availability import FeatureAvailability
print(f" FeatureAvailability: OK")
except Exception as e:
print(f" FeatureAvailability ERROR: {e}")
# Test 7: Quick inference test
print("\n[7] Full Pipeline Test (Minimal)")
try:
print(f" Testing run_inference function...")
from src.forecasting.chronos_inference import run_inference
# This will be slow but should work
print(f" Running smoke test for 2025-09-30...")
print(f" (This may take 60+ seconds...)")
result_path = run_inference(
run_date="2025-09-30",
forecast_type="smoke_test",
output_dir="/tmp"
)
print(f" Result file: {result_path}")
# Check if file has data
import polars as pl
df = pl.read_parquet(result_path)
print(f" Result shape: {df.shape}")
print(f" Columns: {df.columns}")
if len(df.columns) > 1:
print(f" [SUCCESS] Forecast has data!")
else:
print(f" [ERROR] Forecast is empty (only timestamps)")
except Exception as e:
print(f" Pipeline ERROR: {e}")
import traceback
traceback.print_exc()
print("\n" + "="*60)
print("DIAGNOSTIC COMPLETE")
print("="*60)
|