fbmc-chronos2 / scripts /collect_openmeteo_sample.py
Evgueni Poloukarov
feat: complete Phase 1 ENTSO-E asset-specific outage validation
27cb60a
raw
history blame
7.65 kB
"""
Collect OpenMeteo 1-week sample data for Sept 23-30, 2025
Collects weather data for 52 strategic grid points across Core FBMC zones:
- Temperature (2m), Wind (10m, 100m), Solar radiation, Cloud cover, Pressure
Matches the JAO and ENTSOE sample period for integrated analysis.
"""
import os
import sys
from pathlib import Path
from datetime import datetime, timedelta
import pandas as pd
import polars as pl
import requests
import time
# 52 Strategic Grid Points (4-5 per country, covering major generation areas)
GRID_POINTS = [
# Austria (5 points)
{'name': 'AT_Vienna', 'lat': 48.21, 'lon': 16.37, 'zone': 'AT'},
{'name': 'AT_Graz', 'lat': 47.07, 'lon': 15.44, 'zone': 'AT'},
{'name': 'AT_Linz', 'lat': 48.31, 'lon': 14.29, 'zone': 'AT'},
{'name': 'AT_Salzburg', 'lat': 47.81, 'lon': 13.04, 'zone': 'AT'},
{'name': 'AT_Innsbruck', 'lat': 47.27, 'lon': 11.39, 'zone': 'AT'},
# Belgium (4 points)
{'name': 'BE_Brussels', 'lat': 50.85, 'lon': 4.35, 'zone': 'BE'},
{'name': 'BE_Antwerp', 'lat': 51.22, 'lon': 4.40, 'zone': 'BE'},
{'name': 'BE_Liege', 'lat': 50.63, 'lon': 5.57, 'zone': 'BE'},
{'name': 'BE_Ghent', 'lat': 51.05, 'lon': 3.72, 'zone': 'BE'},
# Czech Republic (5 points)
{'name': 'CZ_Prague', 'lat': 50.08, 'lon': 14.44, 'zone': 'CZ'},
{'name': 'CZ_Brno', 'lat': 49.19, 'lon': 16.61, 'zone': 'CZ'},
{'name': 'CZ_Ostrava', 'lat': 49.82, 'lon': 18.26, 'zone': 'CZ'},
{'name': 'CZ_Plzen', 'lat': 49.75, 'lon': 13.38, 'zone': 'CZ'},
{'name': 'CZ_Liberec', 'lat': 50.77, 'lon': 15.06, 'zone': 'CZ'},
# Germany-Luxembourg (5 points - major generation areas)
{'name': 'DE_Berlin', 'lat': 52.52, 'lon': 13.40, 'zone': 'DE_LU'},
{'name': 'DE_Munich', 'lat': 48.14, 'lon': 11.58, 'zone': 'DE_LU'},
{'name': 'DE_Frankfurt', 'lat': 50.11, 'lon': 8.68, 'zone': 'DE_LU'},
{'name': 'DE_Hamburg', 'lat': 53.55, 'lon': 9.99, 'zone': 'DE_LU'},
{'name': 'DE_Cologne', 'lat': 50.94, 'lon': 6.96, 'zone': 'DE_LU'},
# France (5 points)
{'name': 'FR_Paris', 'lat': 48.86, 'lon': 2.35, 'zone': 'FR'},
{'name': 'FR_Marseille', 'lat': 43.30, 'lon': 5.40, 'zone': 'FR'},
{'name': 'FR_Lyon', 'lat': 45.76, 'lon': 4.84, 'zone': 'FR'},
{'name': 'FR_Toulouse', 'lat': 43.60, 'lon': 1.44, 'zone': 'FR'},
{'name': 'FR_Nantes', 'lat': 47.22, 'lon': -1.55, 'zone': 'FR'},
# Croatia (4 points)
{'name': 'HR_Zagreb', 'lat': 45.81, 'lon': 15.98, 'zone': 'HR'},
{'name': 'HR_Split', 'lat': 43.51, 'lon': 16.44, 'zone': 'HR'},
{'name': 'HR_Rijeka', 'lat': 45.33, 'lon': 14.44, 'zone': 'HR'},
{'name': 'HR_Osijek', 'lat': 45.55, 'lon': 18.69, 'zone': 'HR'},
# Hungary (5 points)
{'name': 'HU_Budapest', 'lat': 47.50, 'lon': 19.04, 'zone': 'HU'},
{'name': 'HU_Debrecen', 'lat': 47.53, 'lon': 21.64, 'zone': 'HU'},
{'name': 'HU_Szeged', 'lat': 46.25, 'lon': 20.15, 'zone': 'HU'},
{'name': 'HU_Miskolc', 'lat': 48.10, 'lon': 20.78, 'zone': 'HU'},
{'name': 'HU_Pecs', 'lat': 46.07, 'lon': 18.23, 'zone': 'HU'},
# Netherlands (4 points)
{'name': 'NL_Amsterdam', 'lat': 52.37, 'lon': 4.89, 'zone': 'NL'},
{'name': 'NL_Rotterdam', 'lat': 51.92, 'lon': 4.48, 'zone': 'NL'},
{'name': 'NL_Utrecht', 'lat': 52.09, 'lon': 5.12, 'zone': 'NL'},
{'name': 'NL_Groningen', 'lat': 53.22, 'lon': 6.57, 'zone': 'NL'},
# Poland (5 points)
{'name': 'PL_Warsaw', 'lat': 52.23, 'lon': 21.01, 'zone': 'PL'},
{'name': 'PL_Krakow', 'lat': 50.06, 'lon': 19.94, 'zone': 'PL'},
{'name': 'PL_Gdansk', 'lat': 54.35, 'lon': 18.65, 'zone': 'PL'},
{'name': 'PL_Wroclaw', 'lat': 51.11, 'lon': 17.04, 'zone': 'PL'},
{'name': 'PL_Poznan', 'lat': 52.41, 'lon': 16.93, 'zone': 'PL'},
# Romania (4 points)
{'name': 'RO_Bucharest', 'lat': 44.43, 'lon': 26.11, 'zone': 'RO'},
{'name': 'RO_Cluj', 'lat': 46.77, 'lon': 23.60, 'zone': 'RO'},
{'name': 'RO_Timisoara', 'lat': 45.75, 'lon': 21.23, 'zone': 'RO'},
{'name': 'RO_Iasi', 'lat': 47.16, 'lon': 27.59, 'zone': 'RO'},
# Slovenia (3 points)
{'name': 'SI_Ljubljana', 'lat': 46.06, 'lon': 14.51, 'zone': 'SI'},
{'name': 'SI_Maribor', 'lat': 46.56, 'lon': 15.65, 'zone': 'SI'},
{'name': 'SI_Celje', 'lat': 46.24, 'lon': 15.27, 'zone': 'SI'},
# Slovakia (3 points)
{'name': 'SK_Bratislava', 'lat': 48.15, 'lon': 17.11, 'zone': 'SK'},
{'name': 'SK_Kosice', 'lat': 48.72, 'lon': 21.26, 'zone': 'SK'},
{'name': 'SK_Zilina', 'lat': 49.22, 'lon': 18.74, 'zone': 'SK'},
]
# 7 Weather variables (as specified in feature plan)
WEATHER_VARS = [
'temperature_2m',
'windspeed_10m',
'windspeed_100m',
'winddirection_100m',
'shortwave_radiation',
'cloudcover',
'surface_pressure',
]
# Sample period: Sept 23-30, 2025 (matches JAO/ENTSOE sample)
START_DATE = '2025-09-23'
END_DATE = '2025-09-30'
print("=" * 70)
print("OpenMeteo 1-Week Sample Data Collection")
print("=" * 70)
print(f"Period: {START_DATE} to {END_DATE}")
print(f"Grid Points: {len(GRID_POINTS)} strategic locations")
print(f"Variables: {len(WEATHER_VARS)} weather parameters")
print(f"Duration: 7 days = 168 hours")
print()
# Collect data for all grid points
all_weather_data = []
for i, point in enumerate(GRID_POINTS, 1):
print(f"[{i:2d}/{len(GRID_POINTS)}] {point['name']}...", end=" ")
try:
# OpenMeteo API call
url = "https://api.open-meteo.com/v1/forecast"
params = {
'latitude': point['lat'],
'longitude': point['lon'],
'hourly': ','.join(WEATHER_VARS),
'start_date': START_DATE,
'end_date': END_DATE,
'timezone': 'UTC'
}
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
# Extract hourly data
hourly = data.get('hourly', {})
timestamps = pd.to_datetime(hourly['time'])
# Create DataFrame for this point
point_df = pd.DataFrame({
'timestamp': timestamps,
'grid_point': point['name'],
'zone': point['zone'],
'lat': point['lat'],
'lon': point['lon'],
})
# Add all weather variables
for var in WEATHER_VARS:
if var in hourly:
point_df[var] = hourly[var]
else:
point_df[var] = None
all_weather_data.append(point_df)
print(f"[OK] {len(point_df)} hours")
# Rate limiting: 270 req/min = ~0.22 sec between requests
time.sleep(0.25)
except Exception as e:
print(f"[ERROR] {e}")
continue
if not all_weather_data:
print("\n[ERROR] No data collected")
sys.exit(1)
# Combine all grid points
print("\n" + "=" * 70)
print("Processing collected data...")
combined_df = pd.concat(all_weather_data, axis=0, ignore_index=True)
print(f" Combined shape: {combined_df.shape}")
print(f" Total hours: {len(combined_df) // len(GRID_POINTS)} per point")
print(f" Columns: {list(combined_df.columns)}")
# Save to parquet
output_dir = Path("data/raw/sample")
output_dir.mkdir(parents=True, exist_ok=True)
output_file = output_dir / "weather_sample_sept2025.parquet"
combined_df.to_parquet(output_file, index=False)
print(f"\n[SUCCESS] Saved to: {output_file}")
print(f" File size: {output_file.stat().st_size / 1024:.1f} KB")
print()
print("=" * 70)
print("OpenMeteo Sample Collection Complete")
print("=" * 70)
print(f"\nCollected: {len(GRID_POINTS)} points × 7 variables × 168 hours")
print(f"Total records: {len(combined_df):,}")
print("\nNext: Add weather exploration to Marimo notebook")