fbmc-chronos2 / README_HF_SPACE.md
Evgueni Poloukarov
chore: merge with HF Space template - keep our README and requirements
330e408
---
title: FBMC Chronos-2 Zero-Shot Forecasting
emoji:
colorFrom: blue
colorTo: green
sdk: jupyterlab
sdk_version: "4.0.0"
app_file: inference_smoke_test.ipynb
pinned: false
license: mit
hardware: a10g-small
---
# FBMC Flow-Based Market Coupling Forecasting
Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos 2.
## 🚀 Quick Start
This HuggingFace Space provides interactive Jupyter notebooks for running zero-shot forecasts on GPU.
### Available Notebooks
1. **`inference_smoke_test.ipynb`** - Quick validation (1 border × 7 days, ~1 min)
2. **`inference_full_14day.ipynb`** - Production forecast (38 borders × 14 days, ~5 min)
3. **`evaluation.ipynb`** - Performance analysis vs actuals
### How to Use
1. Open any notebook in JupyterLab
2. Run all cells (Cell → Run All)
3. View results and visualizations inline
## 📊 Dataset
**Source**: [evgueni-p/fbmc-features-24month](https://huggingface.co/datasets/evgueni-p/fbmc-features-24month)
- **Rows**: 17,880 hourly observations
- **Date Range**: Oct 1, 2023 - Oct 14, 2025
- **Features**: 2,553 engineered features
- Weather: 375 features (52 grid points)
- ENTSO-E: ~1,863 features (generation, demand, prices, outages)
- JAO: 276 features (CNEC binding, RAM, utilization, LTA, net positions)
- Temporal: 39 features (hour, day, month, etc.)
- **Targets**: 38 FBMC cross-border flows (MW)
## 🔬 Model
**Amazon Chronos 2 Large** (710M parameters)
- Pre-trained foundation model for time series
- Zero-shot inference (no fine-tuning)
- Multivariate forecasting with future covariates
- Dynamic time-aware data extraction (prevents leakage)
## ⚡ Hardware
**GPU**: NVIDIA A10G (24GB VRAM)
- Model inference: ~5 minutes for complete 14-day forecast
- Recommended for production workloads
## 📈 Performance Target
**D+1 MAE Goal**: <150 MW per border
This is a zero-shot baseline. Fine-tuning (Phase 2) expected to improve accuracy by 20-40%.
## 🔐 Requirements
Set `HF_TOKEN` in Space secrets to access the private dataset.
## 🛠️ Technical Details
### Feature Availability Windows
The system implements time-aware forecasting to prevent data leakage:
- **Full-horizon D+14** (603 features): Weather, CNEC outages, LTA
- **Partial D+1** (12 features): Load forecasts (masked D+2-D+14)
- **Historical only** (1,899 features): Prices, generation, demand
### Dynamic Forecast System
Uses `DynamicForecast` module to extract context and future covariates based on run date:
- Context window: 512 hours (historical data)
- Forecast horizon: 336 hours (14 days)
- Automatic masking for partial availability
## 📚 Documentation
- [Project Repository](https://github.com/evgspacdmy/fbmc_chronos2)
- [Activity Log](https://github.com/evgspacdmy/fbmc_chronos2/blob/main/doc/activity.md)
- [Feature Engineering Details](https://github.com/evgspacdmy/fbmc_chronos2/tree/main/src/feature_engineering)
## 🔄 Phase 2 Roadmap
Future improvements (not included in zero-shot MVP):
- Fine-tuning on FBMC data
- Ensemble methods
- Probabilistic forecasting
- Real-time data pipeline
- Production API
## 👤 Author
**Evgueni Poloukarov**
## 📄 License
MIT License - See LICENSE file for details
---
**Last Updated**: 2025-11-14
**Version**: 1.0.0 (Zero-Shot MVP)