Spaces:
Running
Running
Add all other models, reorganize sections, add description
Browse files
app.py
CHANGED
|
@@ -16,7 +16,60 @@ from tensorflow.keras.models import load_model
|
|
| 16 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 17 |
import re
|
| 18 |
|
| 19 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
models = {
|
| 21 |
"DistilBERT": {
|
| 22 |
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
|
@@ -37,49 +90,23 @@ models = {
|
|
| 37 |
}
|
| 38 |
}
|
| 39 |
|
| 40 |
-
#
|
| 41 |
logistic_regression_repo = "nhull/logistic-regression-model"
|
| 42 |
-
|
| 43 |
-
# Download and load logistic regression model
|
| 44 |
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
|
| 45 |
with open(log_reg_model_path, "rb") as model_file:
|
| 46 |
log_reg_model = pickle.load(model_file)
|
| 47 |
|
| 48 |
-
# Download and load TF-IDF vectorizer
|
| 49 |
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
|
| 50 |
with open(vectorizer_path, "rb") as vectorizer_file:
|
| 51 |
vectorizer = pickle.load(vectorizer_file)
|
| 52 |
|
| 53 |
-
# Move HuggingFace models to device
|
| 54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
for model_data in models.values():
|
| 56 |
if "model" in model_data:
|
| 57 |
model_data["model"].to(device)
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
gru_repo_id = "arjahojnik/GRU-sentiment-model"
|
| 61 |
-
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
|
| 62 |
-
gru_model = load_model(gru_model_path)
|
| 63 |
-
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
|
| 64 |
-
with open(gru_tokenizer_path, "rb") as f:
|
| 65 |
-
gru_tokenizer = pickle.load(f)
|
| 66 |
-
|
| 67 |
-
# Preprocessing function for GRU
|
| 68 |
-
def preprocess_text(text):
|
| 69 |
-
text = text.lower()
|
| 70 |
-
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
|
| 71 |
-
return text
|
| 72 |
-
|
| 73 |
-
# GRU prediction function
|
| 74 |
-
def predict_with_gru(text):
|
| 75 |
-
cleaned = preprocess_text(text)
|
| 76 |
-
seq = gru_tokenizer.texts_to_sequences([cleaned])
|
| 77 |
-
padded_seq = pad_sequences(seq, maxlen=200) # Ensure maxlen matches the GRU training
|
| 78 |
-
probs = gru_model.predict(padded_seq)
|
| 79 |
-
predicted_class = np.argmax(probs, axis=1)[0]
|
| 80 |
-
return int(predicted_class + 1)
|
| 81 |
-
|
| 82 |
-
# Functions for other model predictions
|
| 83 |
def predict_with_distilbert(text):
|
| 84 |
tokenizer = models["DistilBERT"]["tokenizer"]
|
| 85 |
model = models["DistilBERT"]["model"]
|
|
@@ -125,18 +152,18 @@ def predict_with_roberta_ordek899(text):
|
|
| 125 |
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 126 |
return int(predictions[0] + 1)
|
| 127 |
|
| 128 |
-
# Unified function for
|
| 129 |
def analyze_sentiment_and_statistics(text):
|
| 130 |
results = {
|
|
|
|
| 131 |
"GRU Model": predict_with_gru(text),
|
|
|
|
|
|
|
| 132 |
"DistilBERT": predict_with_distilbert(text),
|
| 133 |
-
"Logistic Regression": predict_with_logistic_regression(text),
|
| 134 |
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
| 135 |
"TinyBERT": predict_with_tinybert(text),
|
| 136 |
"RoBERTa": predict_with_roberta_ordek899(text),
|
| 137 |
}
|
| 138 |
-
|
| 139 |
-
# Calculate statistics
|
| 140 |
scores = list(results.values())
|
| 141 |
min_score = min(scores)
|
| 142 |
max_score = max(scores)
|
|
@@ -158,12 +185,64 @@ def analyze_sentiment_and_statistics(text):
|
|
| 158 |
return results, statistics
|
| 159 |
|
| 160 |
# Gradio Interface
|
| 161 |
-
with gr.Blocks(
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
gr.Markdown(
|
| 164 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
-
|
| 167 |
with gr.Row():
|
| 168 |
with gr.Column():
|
| 169 |
text_input = gr.Textbox(
|
|
@@ -184,7 +263,6 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 184 |
interactive=True
|
| 185 |
)
|
| 186 |
|
| 187 |
-
# Sync dropdown with text input
|
| 188 |
def update_textbox(selected_sample):
|
| 189 |
return selected_sample
|
| 190 |
|
|
@@ -193,43 +271,68 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 193 |
inputs=[sample_dropdown],
|
| 194 |
outputs=[text_input]
|
| 195 |
)
|
|
|
|
| 196 |
|
|
|
|
| 197 |
with gr.Column():
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
with gr.Row():
|
| 201 |
with gr.Column():
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
roberta_ordek_output = gr.Textbox(label="Predicted Sentiment (RoBERTa)", interactive=False)
|
| 208 |
-
|
| 209 |
with gr.Column():
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
# Button to analyze sentiment and show statistics
|
| 213 |
def process_input_and_analyze(text_input):
|
| 214 |
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 215 |
if "Message" in statistics:
|
| 216 |
return (
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
| 223 |
f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
|
| 224 |
)
|
| 225 |
else:
|
| 226 |
return (
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
| 233 |
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
|
| 234 |
)
|
| 235 |
|
|
@@ -237,15 +340,16 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
|
|
| 237 |
process_input_and_analyze,
|
| 238 |
inputs=[text_input],
|
| 239 |
outputs=[
|
| 240 |
-
gru_output,
|
| 241 |
-
distilbert_output,
|
| 242 |
log_reg_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
bert_output,
|
| 244 |
tinybert_output,
|
| 245 |
-
|
| 246 |
-
|
| 247 |
]
|
| 248 |
)
|
| 249 |
|
| 250 |
-
# Launch the app
|
| 251 |
demo.launch()
|
|
|
|
| 16 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 17 |
import re
|
| 18 |
|
| 19 |
+
# Load GRU, LSTM, and BiLSTM models and tokenizers
|
| 20 |
+
gru_repo_id = "arjahojnik/GRU-sentiment-model"
|
| 21 |
+
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
|
| 22 |
+
gru_model = load_model(gru_model_path)
|
| 23 |
+
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
|
| 24 |
+
with open(gru_tokenizer_path, "rb") as f:
|
| 25 |
+
gru_tokenizer = pickle.load(f)
|
| 26 |
+
|
| 27 |
+
lstm_repo_id = "arjahojnik/LSTM-sentiment-model"
|
| 28 |
+
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="LSTM_model.h5")
|
| 29 |
+
lstm_model = load_model(lstm_model_path)
|
| 30 |
+
lstm_tokenizer_path = hf_hub_download(repo_id=lstm_repo_id, filename="my_tokenizer.pkl")
|
| 31 |
+
with open(lstm_tokenizer_path, "rb") as f:
|
| 32 |
+
lstm_tokenizer = pickle.load(f)
|
| 33 |
+
|
| 34 |
+
bilstm_repo_id = "arjahojnik/BiLSTM-sentiment-model"
|
| 35 |
+
bilstm_model_path = hf_hub_download(repo_id=bilstm_repo_id, filename="BiLSTM_model.h5")
|
| 36 |
+
bilstm_model = load_model(bilstm_model_path)
|
| 37 |
+
bilstm_tokenizer_path = hf_hub_download(repo_id=bilstm_repo_id, filename="my_tokenizer.pkl")
|
| 38 |
+
with open(bilstm_tokenizer_path, "rb") as f:
|
| 39 |
+
bilstm_tokenizer = pickle.load(f)
|
| 40 |
+
|
| 41 |
+
# Preprocessing function for text
|
| 42 |
+
def preprocess_text(text):
|
| 43 |
+
text = text.lower()
|
| 44 |
+
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
|
| 45 |
+
return text
|
| 46 |
+
|
| 47 |
+
# Prediction functions for GRU, LSTM, and BiLSTM
|
| 48 |
+
def predict_with_gru(text):
|
| 49 |
+
cleaned = preprocess_text(text)
|
| 50 |
+
seq = gru_tokenizer.texts_to_sequences([cleaned])
|
| 51 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 52 |
+
probs = gru_model.predict(padded_seq)
|
| 53 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 54 |
+
return int(predicted_class + 1)
|
| 55 |
+
|
| 56 |
+
def predict_with_lstm(text):
|
| 57 |
+
cleaned = preprocess_text(text)
|
| 58 |
+
seq = lstm_tokenizer.texts_to_sequences([cleaned])
|
| 59 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 60 |
+
probs = lstm_model.predict(padded_seq)
|
| 61 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 62 |
+
return int(predicted_class + 1)
|
| 63 |
+
|
| 64 |
+
def predict_with_bilstm(text):
|
| 65 |
+
cleaned = preprocess_text(text)
|
| 66 |
+
seq = bilstm_tokenizer.texts_to_sequences([cleaned])
|
| 67 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 68 |
+
probs = bilstm_model.predict(padded_seq)
|
| 69 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 70 |
+
return int(predicted_class + 1)
|
| 71 |
+
|
| 72 |
+
# Load other models
|
| 73 |
models = {
|
| 74 |
"DistilBERT": {
|
| 75 |
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
|
|
|
| 90 |
}
|
| 91 |
}
|
| 92 |
|
| 93 |
+
# Logistic regression model and TF-IDF vectorizer
|
| 94 |
logistic_regression_repo = "nhull/logistic-regression-model"
|
|
|
|
|
|
|
| 95 |
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
|
| 96 |
with open(log_reg_model_path, "rb") as model_file:
|
| 97 |
log_reg_model = pickle.load(model_file)
|
| 98 |
|
|
|
|
| 99 |
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
|
| 100 |
with open(vectorizer_path, "rb") as vectorizer_file:
|
| 101 |
vectorizer = pickle.load(vectorizer_file)
|
| 102 |
|
| 103 |
+
# Move HuggingFace models to device
|
| 104 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 105 |
for model_data in models.values():
|
| 106 |
if "model" in model_data:
|
| 107 |
model_data["model"].to(device)
|
| 108 |
|
| 109 |
+
# Prediction functions for other models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
def predict_with_distilbert(text):
|
| 111 |
tokenizer = models["DistilBERT"]["tokenizer"]
|
| 112 |
model = models["DistilBERT"]["model"]
|
|
|
|
| 152 |
predictions = logits.argmax(axis=-1).cpu().numpy()
|
| 153 |
return int(predictions[0] + 1)
|
| 154 |
|
| 155 |
+
# Unified function for analysis
|
| 156 |
def analyze_sentiment_and_statistics(text):
|
| 157 |
results = {
|
| 158 |
+
"Logistic Regression": predict_with_logistic_regression(text),
|
| 159 |
"GRU Model": predict_with_gru(text),
|
| 160 |
+
"LSTM Model": predict_with_lstm(text),
|
| 161 |
+
"BiLSTM Model": predict_with_bilstm(text),
|
| 162 |
"DistilBERT": predict_with_distilbert(text),
|
|
|
|
| 163 |
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
| 164 |
"TinyBERT": predict_with_tinybert(text),
|
| 165 |
"RoBERTa": predict_with_roberta_ordek899(text),
|
| 166 |
}
|
|
|
|
|
|
|
| 167 |
scores = list(results.values())
|
| 168 |
min_score = min(scores)
|
| 169 |
max_score = max(scores)
|
|
|
|
| 185 |
return results, statistics
|
| 186 |
|
| 187 |
# Gradio Interface
|
| 188 |
+
with gr.Blocks(
|
| 189 |
+
css="""
|
| 190 |
+
.gradio-container {
|
| 191 |
+
max-width: 900px;
|
| 192 |
+
margin: auto;
|
| 193 |
+
padding: 20px;
|
| 194 |
+
background-color: #1e1e1e; /* Dark background for contrast */
|
| 195 |
+
color: white; /* White text throughout */
|
| 196 |
+
}
|
| 197 |
+
h1 {
|
| 198 |
+
text-align: center;
|
| 199 |
+
font-size: 2.5rem;
|
| 200 |
+
color: white; /* White text for title */
|
| 201 |
+
}
|
| 202 |
+
footer {
|
| 203 |
+
text-align: center;
|
| 204 |
+
margin-top: 20px;
|
| 205 |
+
font-size: 14px;
|
| 206 |
+
color: white; /* White text for footer */
|
| 207 |
+
}
|
| 208 |
+
.gr-button {
|
| 209 |
+
background-color: #4a4a4a; /* Dark gray button background */
|
| 210 |
+
color: white; /* White button text */
|
| 211 |
+
border-radius: 8px; /* Rounded buttons */
|
| 212 |
+
padding: 10px 20px;
|
| 213 |
+
font-weight: bold;
|
| 214 |
+
transition: background-color 0.3s ease;
|
| 215 |
+
}
|
| 216 |
+
.gr-button:hover {
|
| 217 |
+
background-color: #6a6a6a; /* Slightly lighter gray on hover */
|
| 218 |
+
}
|
| 219 |
+
.gr-textbox, .gr-dropdown, .gr-output {
|
| 220 |
+
border: 1px solid #4a4a4a; /* Subtle gray border */
|
| 221 |
+
border-radius: 8px; /* Rounded edges */
|
| 222 |
+
background-color: #2e2e2e; /* Darker gray input background */
|
| 223 |
+
color: white; /* White text for inputs/outputs */
|
| 224 |
+
}
|
| 225 |
+
"""
|
| 226 |
+
) as demo:
|
| 227 |
+
gr.Markdown("# Sentiment Analysis Demo")
|
| 228 |
gr.Markdown(
|
| 229 |
+
"""
|
| 230 |
+
This demo analyzes the sentiment of text inputs (e.g., hotel or restaurant reviews) on a scale from 1 to 5 using various machine learning, deep learning, and transformer-based models.
|
| 231 |
+
|
| 232 |
+
- **Machine Learning**: Logistic Regression with TF-IDF.
|
| 233 |
+
- **Deep Learning**: GRU, LSTM, and BiLSTM models.
|
| 234 |
+
- **Transformers**: DistilBERT, TinyBERT, BERT Multilingual, and RoBERTa.
|
| 235 |
+
|
| 236 |
+
### Features:
|
| 237 |
+
- Compare predictions across different models.
|
| 238 |
+
- See which model predicts the highest and lowest scores.
|
| 239 |
+
- Get the average sentiment score across all models.
|
| 240 |
+
- Easily test with your own input or select from suggested reviews.
|
| 241 |
+
|
| 242 |
+
Use this app to explore how different models interpret sentiment and compare their outputs!
|
| 243 |
+
"""
|
| 244 |
)
|
| 245 |
+
|
| 246 |
with gr.Row():
|
| 247 |
with gr.Column():
|
| 248 |
text_input = gr.Textbox(
|
|
|
|
| 263 |
interactive=True
|
| 264 |
)
|
| 265 |
|
|
|
|
| 266 |
def update_textbox(selected_sample):
|
| 267 |
return selected_sample
|
| 268 |
|
|
|
|
| 271 |
inputs=[sample_dropdown],
|
| 272 |
outputs=[text_input]
|
| 273 |
)
|
| 274 |
+
analyze_button = gr.Button("Analyze Sentiment")
|
| 275 |
|
| 276 |
+
with gr.Row():
|
| 277 |
with gr.Column():
|
| 278 |
+
gr.Markdown("### Machine Learning")
|
| 279 |
+
log_reg_output = gr.Textbox(label="Logistic Regression", interactive=False)
|
| 280 |
|
|
|
|
| 281 |
with gr.Column():
|
| 282 |
+
gr.Markdown("### Deep Learning")
|
| 283 |
+
gru_output = gr.Textbox(label="GRU Model", interactive=False)
|
| 284 |
+
lstm_output = gr.Textbox(label="LSTM Model", interactive=False)
|
| 285 |
+
bilstm_output = gr.Textbox(label="BiLSTM Model", interactive=False)
|
| 286 |
+
|
|
|
|
|
|
|
| 287 |
with gr.Column():
|
| 288 |
+
gr.Markdown("### Transformers")
|
| 289 |
+
distilbert_output = gr.Textbox(label="DistilBERT", interactive=False)
|
| 290 |
+
bert_output = gr.Textbox(label="BERT Multilingual", interactive=False)
|
| 291 |
+
tinybert_output = gr.Textbox(label="TinyBERT", interactive=False)
|
| 292 |
+
roberta_output = gr.Textbox(label="RoBERTa", interactive=False)
|
| 293 |
+
|
| 294 |
+
with gr.Row():
|
| 295 |
+
with gr.Column():
|
| 296 |
+
gr.Markdown("### Statistics")
|
| 297 |
+
stats_output = gr.Textbox(label="Statistics", interactive=False)
|
| 298 |
+
|
| 299 |
+
# Add footer
|
| 300 |
+
gr.Markdown(
|
| 301 |
+
"""
|
| 302 |
+
<footer>
|
| 303 |
+
This demo was built as a part of the NLP course at the University of Zagreb.
|
| 304 |
+
Check out our GitHub repository:
|
| 305 |
+
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank" style="color: white; text-decoration: underline;">TripAdvisor Sentiment Analysis</a>
|
| 306 |
+
Explore our HuggingFace collection:
|
| 307 |
+
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank" style="color: white; text-decoration: underline;">NLP Zagreb HuggingFace Collection</a>
|
| 308 |
+
</footer>
|
| 309 |
+
"""
|
| 310 |
+
)
|
| 311 |
|
|
|
|
| 312 |
def process_input_and_analyze(text_input):
|
| 313 |
results, statistics = analyze_sentiment_and_statistics(text_input)
|
| 314 |
if "Message" in statistics:
|
| 315 |
return (
|
| 316 |
+
results["Logistic Regression"],
|
| 317 |
+
results["GRU Model"],
|
| 318 |
+
results["LSTM Model"],
|
| 319 |
+
results["BiLSTM Model"],
|
| 320 |
+
results["DistilBERT"],
|
| 321 |
+
results["BERT Multilingual (NLP Town)"],
|
| 322 |
+
results["TinyBERT"],
|
| 323 |
+
results["RoBERTa"],
|
| 324 |
f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
|
| 325 |
)
|
| 326 |
else:
|
| 327 |
return (
|
| 328 |
+
results["Logistic Regression"],
|
| 329 |
+
results["GRU Model"],
|
| 330 |
+
results["LSTM Model"],
|
| 331 |
+
results["BiLSTM Model"],
|
| 332 |
+
results["DistilBERT"],
|
| 333 |
+
results["BERT Multilingual (NLP Town)"],
|
| 334 |
+
results["TinyBERT"],
|
| 335 |
+
results["RoBERTa"],
|
| 336 |
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
|
| 337 |
)
|
| 338 |
|
|
|
|
| 340 |
process_input_and_analyze,
|
| 341 |
inputs=[text_input],
|
| 342 |
outputs=[
|
|
|
|
|
|
|
| 343 |
log_reg_output,
|
| 344 |
+
gru_output,
|
| 345 |
+
lstm_output,
|
| 346 |
+
bilstm_output,
|
| 347 |
+
distilbert_output,
|
| 348 |
bert_output,
|
| 349 |
tinybert_output,
|
| 350 |
+
roberta_output,
|
| 351 |
+
stats_output
|
| 352 |
]
|
| 353 |
)
|
| 354 |
|
|
|
|
| 355 |
demo.launch()
|