LongCat-Video / app_exp.py
rahul7star's picture
Update app_exp.py
35a5c71 verified
raw
history blame
7.45 kB
import spaces
import os
import sys
import tempfile
import datetime
import numpy as np
from PIL import Image
import gradio as gr
import torch
import torch.distributed as dist
from torchvision.io import write_video
# ============================================================
# 1️⃣ Repo & checkpoint paths
# ============================================================
REPO_PATH = "LongCat-Video"
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")
if not os.path.exists(REPO_PATH):
subprocess.run(["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH], check=True)
sys.path.insert(0, os.path.abspath(REPO_PATH))
from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel
from longcat_video.context_parallel.context_parallel_util import init_context_parallel
from longcat_video.context_parallel import context_parallel_util
import cache_dit
from transformers import AutoTokenizer, UMT5EncoderModel
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# ============================================================
# 2️⃣ Model loader with cache & 4-bit/FP8 quantization
# ============================================================
def load_models(checkpoint_dir=CHECKPOINT_DIR, cp_size=1, quantize=True, cache=True):
cp_split_hw = context_parallel_util.get_optimal_split(cp_size)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir, subfolder="tokenizer", torch_dtype=torch_dtype)
text_encoder = UMT5EncoderModel.from_pretrained(checkpoint_dir, subfolder="text_encoder", torch_dtype=torch_dtype)
vae = AutoencoderKLWan.from_pretrained(checkpoint_dir, subfolder="vae", torch_dtype=torch_dtype)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(checkpoint_dir, subfolder="scheduler", torch_dtype=torch_dtype)
if quantize:
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype
)
else:
quant_cfg = None
dit = LongCatVideoTransformer3DModel.from_pretrained(
checkpoint_dir,
subfolder="dit",
cp_split_hw=cp_split_hw,
torch_dtype=torch_dtype,
quantization_config=quant_cfg
)
if cache:
from cache_dit import enable_cache, BlockAdapter, ForwardPattern, DBCacheConfig
enable_cache(
BlockAdapter(transformer=dit, blocks=dit.blocks, forward_pattern=ForwardPattern.Pattern_3),
cache_config=DBCacheConfig(Fn_compute_blocks=1)
)
pipe = LongCatVideoPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
scheduler=scheduler,
dit=dit
)
pipe.to(device)
return pipe
pipe = load_models()
# ============================================================
# 3️⃣ LoRA refinement
# ============================================================
pipe.dit.load_lora(os.path.join(CHECKPOINT_DIR, 'lora/refinement_lora.safetensors'), 'refinement_lora')
pipe.dit.enable_loras(['refinement_lora'])
pipe.dit.enable_bsa()
# ============================================================
# 4️⃣ Video generation function
# ============================================================
@spaces.GPU(duration=60)
def generate_video(
mode,
prompt,
neg_prompt,
image,
height,
width,
num_frames,
seed,
use_refine,
):
generator = torch.Generator(device=device).manual_seed(int(seed))
if mode=="t2v":
output = pipe.generate_t2v(
prompt=prompt,
negative_prompt=neg_prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=50,
guidance_scale=4.0,
generator=generator
)[0]
else:
pil_image = Image.fromarray(image)
output = pipe.generate_i2v(
image=pil_image,
prompt=prompt,
negative_prompt=neg_prompt,
resolution=f"{height}x{width}",
num_frames=num_frames,
num_inference_steps=50,
guidance_scale=4.0,
generator=generator,
use_kv_cache=True,
offload_kv_cache=False
)[0]
if use_refine:
pipe.dit.enable_loras(['refinement_lora'])
pipe.dit.enable_bsa()
stage1_video_pil = [(frame*255).astype(np.uint8) for frame in output]
stage1_video_pil = [Image.fromarray(f) for f in stage1_video_pil]
output = pipe.generate_refine(
stage1_video=stage1_video_pil,
prompt=prompt,
num_cond_frames=1,
num_inference_steps=50,
generator=generator
)[0]
output_tensor = torch.from_numpy(np.array(output))
output_tensor = (output_tensor*255).clamp(0,255).to(torch.uint8)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
write_video(f.name, output_tensor, fps=15, video_codec="libx264", options={"crf": "18"})
return f.name
# ============================================================
# 5️⃣ Gradio interface
# ============================================================
with gr.Blocks() as demo:
gr.Markdown("# 🎬 Optimized LongCat-Video Demo (FA3 removed)")
with gr.Tab("Text-to-Video"):
prompt_t2v = gr.Textbox(label="Prompt", lines=3)
neg_prompt_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, low quality")
height_t2v = gr.Slider(256,1024,value=480,step=64,label="Height")
width_t2v = gr.Slider(256,1024,value=832,step=64,label="Width")
frames_t2v = gr.Slider(8,180,value=48,step=1,label="Frames")
seed_t2v = gr.Number(value=42,label="Seed",precision=0)
refine_t2v = gr.Checkbox(label="Use Refine",value=True)
out_t2v = gr.Video(label="Generated Video")
btn_t2v = gr.Button("Generate")
btn_t2v.click(
generate_video,
inputs=["t2v", prompt_t2v, neg_prompt_t2v, None, height_t2v, width_t2v, frames_t2v, seed_t2v, refine_t2v],
outputs=out_t2v
)
with gr.Tab("Image-to-Video"):
image_i2v = gr.Image(type="numpy")
prompt_i2v = gr.Textbox(label="Prompt", lines=3)
neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="ugly, blurry, low quality")
frames_i2v = gr.Slider(8,180,value=48,step=1,label="Frames")
seed_i2v = gr.Number(value=42,label="Seed",precision=0)
refine_i2v = gr.Checkbox(label="Use Refine",value=True)
out_i2v = gr.Video(label="Generated Video")
btn_i2v = gr.Button("Generate")
btn_i2v.click(
generate_video,
inputs=["i2v", prompt_i2v, neg_prompt_i2v, image_i2v, 480, 832, frames_i2v, seed_i2v, refine_i2v],
outputs=out_i2v
)
if __name__=="__main__":
demo.launch()