File size: 10,459 Bytes
5925ea4
 
b2baa38
 
c44ad11
b2baa38
 
5925ea4
 
b2baa38
5925ea4
c44ad11
5925ea4
b573d19
5925ea4
b573d19
 
 
 
 
11d4598
5925ea4
b573d19
5925ea4
b2baa38
 
c44ad11
b2baa38
5925ea4
 
 
 
 
b2baa38
ece32ef
b2baa38
 
 
 
 
 
c44ad11
b573d19
 
b2baa38
ece32ef
5925ea4
 
 
 
 
 
 
 
b573d19
5925ea4
35a5c71
b573d19
5925ea4
b573d19
5925ea4
 
 
b573d19
 
 
 
 
 
 
 
 
 
 
 
5925ea4
 
 
 
b573d19
5925ea4
 
 
 
 
 
 
 
 
b573d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5925ea4
 
 
 
 
 
 
 
b573d19
5925ea4
 
 
 
 
 
b573d19
5925ea4
35a5c71
 
 
 
b2baa38
b573d19
3e5f523
b573d19
 
3e5f523
5925ea4
3e5f523
c44ad11
3e5f523
b573d19
3e5f523
b573d19
 
 
 
 
 
 
 
 
 
 
c44ad11
b573d19
c44ad11
5925ea4
 
b2baa38
c44ad11
b2baa38
5925ea4
 
 
 
 
c44ad11
b573d19
b2baa38
 
5925ea4
 
 
b2baa38
c44ad11
5925ea4
c44ad11
5925ea4
b2baa38
5925ea4
 
b2baa38
5925ea4
b2baa38
5925ea4
 
b2baa38
c44ad11
5925ea4
c44ad11
5925ea4
b2baa38
 
5925ea4
c44ad11
 
b2baa38
5925ea4
76410ab
 
b573d19
c44ad11
b573d19
76410ab
c44ad11
35a5c71
c44ad11
5925ea4
76410ab
5925ea4
b2baa38
c44ad11
 
 
 
5925ea4
b573d19
 
 
c44ad11
5925ea4
 
 
b573d19
5925ea4
c44ad11
b573d19
5925ea4
 
b573d19
 
5925ea4
 
 
 
 
 
b573d19
 
 
 
 
 
5925ea4
 
 
c44ad11
b573d19
5925ea4
 
 
 
 
 
 
 
b573d19
 
 
 
5925ea4
 
 
 
b573d19
c44ad11
5925ea4
 
 
 
 
 
 
 
 
 
 
 
 
c44ad11
 
b573d19
 
5925ea4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import torch
import os
import sys
import subprocess
import tempfile
import numpy as np
import site
import importlib
from PIL import Image
from huggingface_hub import snapshot_download, hf_hub_download

# ============================================================
# 0️⃣ Install required packages
# ============================================================
subprocess.run(["pip3", "install", "-U", "cache-dit"], check=True)



import cache_dit

# ============================================================
# 1️⃣ Repository & Weights
# ============================================================
REPO_PATH = "LongCat-Video"
CHECKPOINT_DIR = os.path.join(REPO_PATH, "weights", "LongCat-Video")

if not os.path.exists(REPO_PATH):
    subprocess.run(
        ["git", "clone", "https://github.com/meituan-longcat/LongCat-Video.git", REPO_PATH],
        check=True
    )

sys.path.insert(0, os.path.abspath(REPO_PATH))

from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel
from longcat_video.context_parallel import context_parallel_util
from transformers import AutoTokenizer, UMT5EncoderModel
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig

if not os.path.exists(CHECKPOINT_DIR):
    snapshot_download(
        repo_id="meituan-longcat/LongCat-Video",
        local_dir=CHECKPOINT_DIR,
        local_dir_use_symlinks=False,
        ignore_patterns=["*.md", "*.gitattributes", "assets/*"]
    )

# ============================================================
# 2️⃣ Device & Models (with cache & quantization)
# ============================================================
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
pipe = None

try:
    cp_split_hw = context_parallel_util.get_optimal_split(1)
    tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_DIR, subfolder="tokenizer", torch_dtype=torch_dtype)

    # Text encoder with 4-bit quantization
    text_encoder = UMT5EncoderModel.from_pretrained(
        CHECKPOINT_DIR,
        subfolder="text_encoder",
        torch_dtype=torch_dtype,
        quantization_config=TransformersBitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch_dtype
        )
    )

    vae = AutoencoderKLWan.from_pretrained(CHECKPOINT_DIR, subfolder="vae", torch_dtype=torch_dtype)
    scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(CHECKPOINT_DIR, subfolder="scheduler", torch_dtype=torch_dtype)

    # DiT model with FP8/4-bit quantization + cache
    dit = LongCatVideoTransformer3DModel.from_pretrained(
        CHECKPOINT_DIR,
        enable_flashattn3=enable_fa3,
        enable_xformers=True,
        subfolder="dit",
        cp_split_hw=cp_split_hw,
        torch_dtype=torch_dtype
    )

    # Enable Cache-DiT
    cache_dit.enable_cache(
        cache_dit.BlockAdapter(
            transformer=dit,
            blocks=dit.blocks,
            forward_pattern=cache_dit.ForwardPattern.Pattern_3,
            check_forward_pattern=False,
            has_separate_cfg=False
        ),
        cache_config=cache_dit.DBCacheConfig(
            Fn_compute_blocks=1,
            Bn_compute_blocks=1,
            max_warmup_steps=5,
            max_cached_steps=50,
            max_continuous_cached_steps=50,
            residual_diff_threshold=0.01,
            num_inference_steps=50
        )
    )

    pipe = LongCatVideoPipeline(
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        vae=vae,
        scheduler=scheduler,
        dit=dit,
    )
    pipe.to(device)
    print("✅ Models loaded with Cache-DiT and quantization")

except Exception as e:
    print(f"❌ Failed to load models: {e}")
    pipe = None

# ============================================================
# 3️⃣ Generation Helper
# ============================================================
def torch_gc():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

def check_duration(
    mode,
    prompt, 
    neg_prompt, 
    image,
    height, width, resolution,
    seed,
    use_distill,
    use_refine,
    progress
):
    if use_distill and resolution=="480p":
        return 180
    elif resolution=="720p":
        return 360
    else:
        return 900

@spaces.GPU(duration=180)
def generate_video(mode, prompt, neg_prompt, image, height, width, resolution,
                   seed, use_distill, use_refine, duration_sec, progress=gr.Progress(track_tqdm=True)):

    if pipe is None:
        raise gr.Error("Models not loaded")

    fps = 15 if use_distill else 30
    num_frames = int(duration_sec * fps)
    generator = torch.Generator(device=device).manual_seed(int(seed))
    is_distill = use_distill or use_refine

    progress(0.2, desc="Stage 1: Base Video Generation")
    pipe.dit.enable_loras(['cfg_step_lora'] if is_distill else [])
    num_inference_steps = 12 if is_distill else 24
    guidance_scale = 2.0 if is_distill else 4.0
    curr_neg_prompt = "" if is_distill else neg_prompt

    if mode=="t2v":
        output = pipe.generate_t2v(
            prompt=prompt,
            negative_prompt=curr_neg_prompt,
            height=height,
            width=width,
            num_frames=num_frames,
            num_inference_steps=num_inference_steps,
            use_distill=is_distill,
            guidance_scale=guidance_scale,
            generator=generator
        )[0]
    else:
        pil_img = Image.fromarray(image)
        output = pipe.generate_i2v(
            image=pil_img,
            prompt=prompt,
            negative_prompt=curr_neg_prompt,
            resolution=resolution,
            num_frames=num_frames,
            num_inference_steps=num_inference_steps,
            use_distill=is_distill,
            guidance_scale=guidance_scale,
            generator=generator
        )[0]

    pipe.dit.disable_all_loras()
    torch_gc()

    if use_refine:
        progress(0.5, desc="Stage 2: Refinement")
        pipe.dit.enable_loras(['refinement_lora'])
        pipe.dit.enable_bsa()
        stage1_video_pil = [(frame*255).astype(np.uint8) for frame in output]
        stage1_video_pil = [Image.fromarray(img) for img in stage1_video_pil]
        refine_image = Image.fromarray(image) if mode=='i2v' else None
        output = pipe.generate_refine(
            image=refine_image,
            prompt=prompt,
            stage1_video=stage1_video_pil,
            num_cond_frames=1 if mode=='i2v' else 0,
            num_inference_steps=50,
            generator=generator
        )[0]
        pipe.dit.disable_all_loras()
        pipe.dit.disable_bsa()
        torch_gc()

    progress(1.0, desc="Exporting video")
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
        export_to_video(output, f.name, fps=fps)
        return f.name

# ============================================================
# 4️⃣ Gradio UI
# ============================================================
css=".fillable{max-width:960px !important}"

with gr.Blocks(css=css) as demo:
    gr.Markdown("# 🎬 LongCat-Video with Cache-DiT & Quantization")
    gr.Markdown("13.6B parameter dense video-generation model by Meituan — [[Model](https://huggingface.co/meituan-longcat/LongCat-Video)]")

    with gr.Tabs():
        # Text-to-Video
        with gr.TabItem("Text-to-Video"):
            mode_t2v = gr.State("t2v")
            with gr.Row():
                with gr.Column(scale=2):
                    prompt_t2v = gr.Textbox(label="Prompt", lines=4)
                    neg_prompt_t2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
                    height_t2v = gr.Slider(256,1024,step=64,value=480,label="Height")
                    width_t2v = gr.Slider(256,1024,step=64,value=832,label="Width")
                    seed_t2v = gr.Number(value=42,label="Seed")
                    distill_t2v = gr.Checkbox(value=True,label="Use Distill Mode")
                    refine_t2v = gr.Checkbox(value=False,label="Use Refine Mode")
                    duration_t2v = gr.Slider(1,20,step=1,value=2,label="Video Duration (seconds)")
                    t2v_button = gr.Button("Generate Video")
                with gr.Column(scale=3):
                    video_output_t2v = gr.Video(label="Generated Video")

        # Image-to-Video
        with gr.TabItem("Image-to-Video"):
            mode_i2v = gr.State("i2v")
            with gr.Row():
                with gr.Column(scale=2):
                    image_i2v = gr.Image(type="numpy", label="Input Image")
                    prompt_i2v = gr.Textbox(label="Prompt", lines=4)
                    neg_prompt_i2v = gr.Textbox(label="Negative Prompt", lines=2, value="blurry, low quality")
                    resolution_i2v = gr.Dropdown(["480p","720p"], value="480p", label="Resolution")
                    seed_i2v = gr.Number(value=42,label="Seed")
                    distill_i2v = gr.Checkbox(value=True,label="Use Distill Mode")
                    refine_i2v = gr.Checkbox(value=False,label="Use Refine Mode")
                    duration_i2v = gr.Slider(1,20,step=1,value=2,label="Video Duration (seconds)")
                    i2v_button = gr.Button("Generate Video")
                with gr.Column(scale=3):
                    video_output_i2v = gr.Video(label="Generated Video")

    # Bind events
    t2v_button.click(
        generate_video,
        inputs=[mode_t2v, prompt_t2v, neg_prompt_t2v, gr.State(None),
                height_t2v, width_t2v, gr.State("480p"),
                seed_t2v, distill_t2v, refine_t2v, duration_t2v],
        outputs=video_output_t2v
    )

    i2v_button.click(
        generate_video,
        inputs=[mode_i2v, prompt_i2v, neg_prompt_i2v, image_i2v,
                gr.State(None), gr.State(None), resolution_i2v,
                seed_i2v, distill_i2v, refine_i2v, duration_i2v],
        outputs=video_output_i2v
    )

# Launch
if __name__=="__main__":
    demo.launch()