nci-binary-detector / README.md
synapti's picture
Model save
833baa4 verified
|
raw
history blame
2.37 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: nci-binary-detector
    results: []

nci-binary-detector

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0031
  • Accuracy: 0.9954
  • F1: 0.9959
  • Precision: 0.9919
  • Recall: 1.0
  • Roc Auc: 0.9986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
0.0093 0.1634 100 0.0043 0.9844 0.9865 0.9763 0.9970 0.9990
0.0021 0.3268 200 0.0036 0.9954 0.9960 0.9930 0.9990 0.9978
0.0001 0.4902 300 0.0011 0.9988 0.9990 0.9980 1.0 0.9999
0.0043 0.6536 400 0.0009 0.9959 0.9965 0.9930 1.0 1.0000
0.0001 0.8170 500 0.0006 0.9988 0.9990 0.9980 1.0 1.0000
0.0006 0.9804 600 0.0010 0.9977 0.9980 0.9980 0.9980 0.9999

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1